Summary

Samtidig Kvantificering af T-celle receptor Resektion cirkler (TRECs) og K-Sletning Recombination Resektion cirkler (KRECs) af Real-time PCR

Published: December 06, 2014
doi:

Summary

Here, we describe a method for simultaneous quantification of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs). The TREC/KREC assay can be used as marker of thymic and bone marrow output.

Abstract

T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) are circularized DNA elements formed during recombination process that creates T- and B-cell receptors. Because TRECs and KRECs are unable to replicate, they are diluted after each cell division, and therefore persist in the cell. Their quantity in peripheral blood can be considered as an estimation of thymic and bone marrow output. By combining well established and commonly used TREC assay with a modified version of KREC assay, we have developed a duplex quantitative real-time PCR that allows quantification of both newly-produced T and B lymphocytes in a single assay. The number of TRECs and KRECs are obtained using a standard curve prepared by serially diluting TREC and KREC signal joints cloned in a bacterial plasmid, together with a fragment of T-cell receptor alpha constant gene that serves as reference gene. Results are reported as number of TRECs and KRECs/106 cells or per ml of blood. The quantification of these DNA fragments have been proven useful for monitoring immune reconstitution following bone marrow transplantation in both children and adults, for improved characterization of immune deficiencies, or for better understanding of certain immunomodulating drug activity.

Introduction

T-celle-receptor excision cirkler (TRECs) og K-sletning rekombination excision cirkler (KRECs) er små cirkulariserede DNA-elementer, der er udskåret i en andel på T- og B-celler, henholdsvis i en genomisk DNA-rekombination proces, der fører til dannelsen af ​​en meget forskelligartet repertoire af T- og B-celle receptorer. De har ingen funktion, men fordi de er stabile og ikke kan replikeres, er de fortyndes efter hver celledeling, således vedvarende kun i ét af de to datterceller. Derfor kan antages niveauet i perifert blod som et estimat af thymus og knoglemarv output.

Mens TREC analysen er stort set brugt de sidste 15 år for at vurdere omfanget af thymus output, til 1 på KRec analysen, der oprindeligt blev udviklet måle B-celle proliferation og dens bidrag til B-celle homeostase i sundhed og sygdom, 2 er først for nylig foreslået som en markør for knogle marrow output. 3,4 Her beskriver vi den metode, vi har udviklet til samtidig kvantificering af både TRECs og KRECs. 4

Med denne kombinerede fremgangsmåde Variabiliteten er forbundet til DNA kvantificering af real-time PCR elimineret ved anvendelse af en unik standardkurve fremstillet ved fortynding af en triple-insert plasmid indeholdende fragmenter af TRECs, KRECs og T-celle-receptor alpha konstant (TCRAC) gen i en 1: 1: 1 ratio. Dette tillader en mere nøjagtig vurdering af TREC og KRec kopiantal. Desuden samtidig kvantificering af de to mål i den samme reaktion tillader reduktion reagens omkostninger.

Den foreslåede TREC / KRec analysen kan være nyttigt at måle omfanget af T- og B-celle neo-produktion hos børn eller voksne med svær kombineret immundefekt (SCID), 4 Almindelig variabel immundefekt, 5 autoimmune sygdomme, 6-8 og HIV-infektion . 9 kan desuden bruges tilovervåge immune bedring efter hæmatopoietisk stamcelletransplantation, 10 enzymerstatningsterapi, 11 og antiviral 9 eller immunmodulerende behandlinger. 6-8 Endelig fordi SCID patienter indregnes ved TREC assay trods de underliggende genetiske defekter, og agammaglobulinæmi patienter kan identificeres under anvendelse KRec kvantificering Den TREC / KRec analysen kan også anvendes til at detektere immundefekter hos nyfødte screeningsprogrammer. 12. I dette tilfælde skal testen udføres på DNA ekstraheret fra små pletter af blod blottet og tørres på filtrerpapir, skal være meget følsom og specifik for de pågældende sygdomme, samt yderst reproducerbar og omkostningseffektiv.

Indførelsen af ​​KRec kvantificering i testen bør forbedre opførelser af nyfødte screening for immundefekter, som rutinemæssigt blevet udført i nogle dele af USA (WI, MA, CA) siden 2008, hvor Wisconsin blev den første til at introduktionene analyse af TRECs i sit postnatal screeningsprogram. 13

Protocol

BEMÆRK: Etik erklæring: Denne protokol følger retningslinjerne i vores institution, Spedali Ċivili di Brescia 1. Fremstilling af en "Triple-Insert" plasmid Udvælgelse og fremstilling af passende udgangsmateriale: Anskaf en prøve indeholdende celler meget sandsynligt at have TRECs og KRECs påvises ved PCR, såsom perifert blod af en ung sund emne opsamlet i EDTA-rør. BEMÆRK: Oprindeligt havde vi udviklet metoden ved hjælp af thymocytter til TRECs…

Representative Results

Analysen blev udført i et repræsentativt udsnit af 87 raske kontrolpersoner: 42 børn i alderen 0-17 (mand / kvinder: 25/17) og 45 voksne i alderen 24-60 (hanner / hunner: 29/16). Resultaterne blev opnået som TRECs og KRECs pr 10 6 PBMC, og derefter TRECs og KRECs pr ml blod blev beregnet. Antallet af TRECs falder med alderen pga thymusinvolution, 4 især i en meget skarp måde fra 0 til 3 – 4 år. Hos voksne er TREC nummer afhænger også af køn, fordi det nedsætt…

Discussion

TREC and KREC quantification can be considered a good estimate of recent thymic and bone marrow output provided that some caveats are taken into account. Even though an absolute quantification method employing standard curve requires more reagents and more space on the real-time PCR reaction plate, it ensures highly accurate quantitative results because unknown sample quantities are interpolated from standard curves built upon known amounts of starting material. Moreover this method is better fitted to detect low amount …

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Histopaque-1077 Sigma Aldrich SRL 10771-500 ML density gradient separation method
QIAamp DNA Blood Mini Kit (250) QIAGEN 51106 DNA extraction
Unmodified DNA Oligonucleotides HPSF 0.01 mmol Eurofins MWG Operon/Carlo Erba Reagents S.r.l  Resuspend the lyophilized product to 100 picmol/µl
AmpliTaq DNA Polymerase: including 10x Buffer II and 25mM MgCl2 Applied Biosystems/Life-Technologies N8080156
GeneAmp dNTP Blend (100 mM) Applied Biosystems/Life-Technologies N8080261
TOPO TA Cloning Kit for Subcloning Invitrogen/Life-Technologies K4500-01
XL1-Blue Subcloning Grade Competent Cells Stratagene 200130
PureYield Plasmid Miniprep System Promega A1223
SpeI 500U New England Biolabs R0133S
HindIII-HF 10,000 U New England Biolabs R3104S
PureYield Plasmid Midiprep System Promega A2492
XhoI 5,000 U New England Biolabs R0146S
TRIS Utrapure Sigma Aldrich SRL T1503
EDTA Sigma Aldrich SRL E5134
TE buffer (1 mM TRIS and 0.1 mM EDTA)
TaqMan Universal PCR Master Mix Applied Biosystems/Life-Technologies 4364338
Dual labeled probes HPLC 0.01 mmol Eurofins MWG Operon/Carlo Erba Reagents S.r.l  Resuspend the lyophilized product to 100 picmol/µl
NanoDrop 2000c spectrophotometer ThermoFisher
Applied Biosystems 2720 Thermal Cycler Applied Biosystems/Life-Technologies 4359659
Fast 7500 Real-Time PCR system Applied Biosystems/Life-Technologies
SDS Sequence Detection Software 1.4 Applied Biosystems/Life-Technologies

Referências

  1. Douek, D. C., et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 396 (6712), 690-695 (1998).
  2. Zelm, M. C., Szczepanski, T., van der Burg, M., van Dongen, J. J. M. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J. Exp. Med. 204 (3), 645-655 (2007).
  3. Fronkova, E., et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 42 (3), 187-196 (2008).
  4. Sottini, A., et al. Simultaneous quantification of recent thymic T-cell and bone marrow B-cell emigrants in patients with primary immunodeficiency undergone to stem cell transplantation. Clin. Immunol. 136 (2), 217-227 (2010).
  5. Serana, F., et al. Thymic and bone marrow output in patients with common variable immunodeficiency. J. Clin. Immunol. 31 (4), 540-549 (2011).
  6. Zanotti, C., et al. Opposite effects of interferon-β on new B and T cell release from production sites in sclerosis. J. Neuroimmunol. 240-241, 147-150 (2011).
  7. Zanotti, C., et al. Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients. Clin. Immunol. 145 (1), 19-26 (2012).
  8. Sottini, A., et al. Pre-existing T- and B-cell defects in one progressive multifocal leukoencephalopathy patient. PLoS One. 7, e34493 (2012).
  9. Quiros-Roldan, E., et al. Effects of combined antiretroviral therapy on B- and T-cell release from production sites in long-term treated HIV-1+ patients. J. Transl. Med. 10, 94 (2012).
  10. Mensen, A., et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J. Transl. Med. 11, 188 (2013).
  11. Serana, F., et al. The different extent of B and T cell immune reconstitution after hematopoietic stem cell transplantation and enzyme replacement therapies in SCID patients with adenosine deaminase deficiency. J. Immunol. 185 (12), 7713-7722 (2010).
  12. Borte, S., et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 119 (11), 2552-2555 (2012).
  13. Baker, M. W., et al. Implementing routine testing for severe combined immunodeficiency within Wisconsin’s newborn screening program. Public Health Rep. 125 (2), 88-95 (2010).
  14. Lorenzi, A. R., et al. Determination of thymic function directly from peripheral blood: a validated modification to an established method. J. Immunol. Meth. 339 (2), 185-194 (2008).
  15. De Boer, R. J., Perelson, A. S. Quantifying T lymphocyte turnover. J. Theor. Biol. 327, 45-87 (2013).
check_url/pt/52184?article_type=t

Play Video

Citar este artigo
Sottini, A., Serana, F., Bertoli, D., Chiarini, M., Valotti, M., Vaglio Tessitore, M., Imberti, L. Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR. J. Vis. Exp. (94), e52184, doi:10.3791/52184 (2014).

View Video