Summary

Utföra subretinal injektioner i Gnagare att leverera pigmentepitelet celler i suspension

Published: January 23, 2015
doi:

Summary

Here we present a community accepted protocol in multimedia format for subretinally injecting a bolus of RPE cells in rats and mice. This approach can be used for determining rescue potentials, safety profiles, and survival capacities of grafted RPE cells upon implantation in animal models of retinal degeneration.

Abstract

Omvandlingen av ljus till elektriska impulser sker i den yttre näthinnan och sker till stor del av tappar och stavar fotoreceptorer och retinal pigment epitel (RPE) celler. RPE ger kritiskt stöd för fotoreceptorer och död eller dysfunktion av RPE-celler är karakteristisk för åldersrelaterad makuladegeneration (AMD), den vanligaste orsaken till bestående synnedsättning hos personer 55 år och äldre. Medan ingen bot för AMD har identifierats, kan implantation av friska RPE i sjuka ögon visa sig vara en effektiv behandling, och ett stort antal RPE-celler kan lätt genereras från pluripotenta stamceller. Flera intressanta frågor om säkerhet och effekt av RPE cell leverans kan fortfarande undersökas i djurmodeller, och väl erkända protokoll som används för att injicera RPE har utvecklats. Tekniken som beskrivs här har använts av flera grupper i olika studier och involverar att först skapa ett hål i ögat med en vass nål. Sedan en spruta med en blunt nål laddad med celler förs in genom hålet och passerade genom glaskroppen tills den vidrör RPE. Med hjälp av denna injektionsmetod, som är relativt enkel och kräver minimal utrustning, uppnår vi konsekvent och effektiv integration av stamcells härrörande RPE celler i mellan värd RPE som förhindrar betydande mängd ljusmätare degeneration i djurmodeller. Även om inte en del av själva protokoll, beskriver vi också hur man bestämmer omfattningen av det trauma som inducerats genom injektion, och hur man kan verifiera att de celler injicerades i subretinalområdet med hjälp av in vivo-avbildningsmetoder. Slutligen är användningen av detta protokoll inte begränsad till RPE-celler; den kan användas för att injicera varje förening eller cellen i subretinalområdet.

Introduction

The sensory retina is organized in functional tiers of neurons, glia, and endothelial cells. Photoreceptors at the back of the retina are activated by light; through phototransduction they convert photons into electrical signals that are refined by interneurons and transmitted to the visual cortex in the brain. Phototransduction cannot occur without the coordinated efforts of Mueller glia and retinal pigment epithelium (RPE) cells. RPE are organized in a monolayer directly behind the photoreceptors and perform multiple and diverse functions integral to photoreceptor function and homeostasis. In fact, RPE and photoreceptors are so co-dependent that they are considered to be one functional unit. Death or dysfunction of RPE results in devastating secondary effects on photoreceptors and is associated with age-related macular degeneration (AMD), the leading cause of blindness in the elderly1,2.

While no cure has been discovered for AMD, several clinical studies have shown that RPE cell replacement may be a promising therapeutic option3-13. With the advent of stem cell technology, it is now possible to generate large numbers of RPE cells in vitro from embryonic and induced pluripotent stem cells (hES and hiPS) that strongly resemble their somatic counterparts functionally and anatomically14-26. Stem cell-derived RPE have also been shown to function in vivo by multiple independent groups, including our own, to significantly slow retinal degeneration in rat and mouse lines with spontaneous retinal degeneration16,18,21,22,25,28,29. This combination of clinical and preclinical supporting evidence is so compelling that several clinical trials to prevent retinal degeneration using stem cell-derived RPE cells are now ongoing30,31.

RPE can be readily derived from hES and/or hiPS and implanted in the subretinal space of rodents using various derivation and injection techniques32,33. (See Westenskow et al. for a methods paper in multimedia format demonstrating the directed differentiation protocol we employ)34. There are critical remaining questions regarding the safety, survival, and functional capacity of exogenously delivered RPE cells upon implantation, therefore the ability to perform subretinal injections in rodents is a critical skill16,18,21,29,36,37. The delivery of RPE is not trivial, and the field is divided on the most effective injection technique. The protocol we describe here is a simple and effective way to deliver of bolus of RPE cells subretinally, and was used in the first clinical trial for stem cell-derived RPE transplantation31. (The reader may also refer to another JoVE article by Eberle et al. for an alternative depiction of subretinal injections in rodents.38)

The technique outlined in this manuscript cannot be visualized and trauma is unavoidable (as with any subretinal injection technique). It is performed by making a hole just under the limbus vessels and inserting a blunt needle along a transscleral route to inject a bolus of cells under the diametrically opposed retina. The person doing the injection will feel resistance as the blunt needle touches the retina. The cells may be directly visualized after the injection, however, and the degree of the induced retinal detachment can be determined by labeling the RPE cells with a transient fluorescent marker and detecting them with a confocal scanning ophthalmoscope (cSLO). An optical coherence tomography (OCT) system can also be used to monitor the trauma and easily identify the injection site.

Protocol

OBS: Alla djuren behandlas i enlighet med de etiska riktlinjer som fastställts av Scripps Research Institute. 1. Beredning av material för Injection (~ 20 min) Pre-varm cell dissociation lösning (helst en som är inaktiv genom utspädning, inte med serum), steril PBS, och odlingsmedier (tabell 1). Sterilisera sprutan med en trubbig nål genom att demontera det och koka delarna i vatten under 15 minuter. <p class="j…

Representative Results

Vi kan leverera en suspension av RPE-celler in i det subretinala utrymmet i gnagare snabbt och konsekvent användning av den teknik som beskrivs i detta manuskript. Även om det inte krävs, kan trauman kraftigt minimeras med hjälp av installations visas med en mikromanipulator i Figur 1A & B. Håll gnagare som visas i figur 1C för tillfällig proptosis. Stegen är desamma om de utförs med mikromanipulator eller för hand; Dessa visas i den tecknade i figur 1D. O…

Discussion

I den här artikeln beskriver vi en relativt enkel metod för att utföra subretinal injektioner av RPE celler i suspension i råttor och möss. Protokollet är lätt att lära och mer erfarenhet med tekniken kommer att översätta i färre trauman (Figur 3, vilket är en av de bättre injektioner), särskilt om en mikromanipulator används (Figur 1A). Varje trauma kan övervakas in vivo med en cSLO och oktober systemet (figur 2) om den är tillgänglig. Om hö…

Declarações

The authors have nothing to disclose.

Acknowledgements

We wish to thank Alison Dorsey for helping to develop the subretinal injection technique. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.

Materials

Name of Material/ Equipment (A-Z) Company Catalog Number Comments/Description
2-Mercaptoethanol (55 mM) Gibco  21985-023 50 mL x 1 
Cell Scapers VWR 89260-222 Case x 1
CellTracker Green CMFDA Molecular Probes C34552 50 ug x 20
DPBS, no calcium, no magnesium Gibco 14190-144 500 mL x 1 
Fast Green Sigma-Aldrich F7258 25 g x 1 
Genteal Geldrops Moderate to Severe Lubricant Eye Drops  Walmart 4060941 25 mL x 1
Hamilton Model 62 RN SYR Hamilton 87942 Syringe x 1 
Hamilton Needle 33 gauge, 0.5", point 3 (304 stainless steel) Hamilton 7803-05 Needles x 6
Knockout DMEM Gibco 10829-018 500 mL x 1 
KnockOut Serum Replacement Gibco 10828-028 500 mL x 1 
L-Glutamine 200 mM Gibco 25030-081 100 mL x 1
Magnetic Stand Leica Biosystems 39430216 Stand x 1
MEM Non-Essential Amino Acids Solution 100X  Gibco 11140-050 100 mL x 1
Micromanipulator Leica Biosystems 3943001 Manipulator x 1
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122 100 mL x 1
Slip Tip Syringes without Needles BD  (3 mL)   VWR BD309656 Pack x 1
Specialty-Use Needles BD  (30 gauge, 1") VWR BD305128 Box x 1
TrypLE Express Enzyme (1X), no phenol red Gibco 12604013 100 mL x 1

Referências

  1. Bird, A. C. Therapeutic targets in age-related macular disease. The Journal of Clinical Investigation. 120 (9), 3033-3041 (2010).
  2. Jong, P. T., Med, N. .. . E. n. g. l. .. . J. .. . Age-related macular degeneration. 355 (14), 1474-1485 (2006).
  3. Abe, T. Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration: short-term results. The Tohoku Journal Of Experimental Medicine. 191 (1), 7-20 (2000).
  4. Algvere, P. V., Berglin, L., Gouras, P., Sheng, Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 232, 707-716 (1994).
  5. Binder, S. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest. Ophthalmol. Vis. Sci. 45 (11), 4151-4160 (2004).
  6. Binder, S. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am. J. Ophthalmol. 133 (2), 215-225 (2002).
  7. Juan, E., Loewenstein, A., Bressler, N. M., Alexander, J. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am. J. Ophthalmol. 125 (5), 635-646 (1998).
  8. Falkner-Radler, C. I. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. British Journal of Ophthalmology. 95 (3), 370-375 (2011).
  9. Joussen, A. M. How complete is successful ‘Autologous retinal pigment epithelium and choriod translocation in patients with exsudative age-related macular degeneration: a short-term follow-up’ by Jan van Meurs and P.R. van Biesen. Graefes. Arch. Clin. Exp. Ophthalmol. 241 (12), 966-967 (2003).
  10. Lai, J. C. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch. Ophthalmol. 120 (10), 1317-1324 (2002).
  11. Machemer, R., Steinhorst, U. H. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes. Arch. Clin. Exp. Ophthalmol. 231 (11), 635-641 (1993).
  12. MacLaren, R. E. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 114 (3), 561-570 (2007).
  13. Peyman, G. A. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surgery. 22 (2), 102-108 (1991).
  14. Buchholz, D. E. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 27 (10), 2427-2434 (2009).
  15. Carr, A. J. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 15 (4), 283-295 (2009).
  16. Carr, A. J. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 4 (12), e8152 (2009).
  17. Hirami, Y. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 458 (3), 126-131 (2009).
  18. Idelson, M. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 5 (4), 396-408 (2009).
  19. Klimanskaya, I. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 6 (3), 217-245 (2004).
  20. Kokkinaki, M., Sahibzada, N., Golestaneh, N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport, Membrane Potential, Polarized Vascular Endothelial Growth Factor Secretion, and Gene Expression Pattern Similar to Native RPE. Stem Cells. 29 (5), 825-835 (2011).
  21. Krohne, T. Generation of retinal pigment epithelial cells from small molecules and OCT4-reprogrammed human induced pluripotent stem cells. Stem Cells Translational Medicine. 1 (2), 96-109 (2012).
  22. Lund, R. D. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 8 (3), 189-199 (2006).
  23. Meyer, J. S. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences. 106 (39), 16698-16703 (2009).
  24. Osakada, F. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122 (17), 3169-3179 (2009).
  25. Vugler, A. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol. 214 (2), 347-361 (2008).
  26. Westenskow, P. D. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Invest. Ophthalmol. Vis. Sci. 53 (10), 6282-6290 (2012).
  27. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122 (10), 598-614 (2004).
  28. Li, Y., et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine. 18, 1312-1319 (2012).
  29. Wang, N. K. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa). Transplantation. 89 (8), 911-919 (2010).
  30. Ramsden, C. M. Stem cells in retinal regeneration: past, present and future. Development. 140 (12), 2576-2585 (2013).
  31. Schwartz, S. D. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet. 379 (9817), 713-720 (2012).
  32. Carr, A. J. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences. 36 (7), 385-395 (2013).
  33. Westenskow, P., Friedlander, M., Werne, J. S., Chalupa, L. M. Ch. 111. The New Visual Neurosciences. , 1611-1626 (2013).
  34. Westenskow, P., Sedillo, Z., Friedlander, M. Efficient Derivation of Retinal Pigment Epithelium Cells from iPS. J. Vis. Exp. , .
  35. Furhmann, S., Levine, E. M., Friedlander, M. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 127 (21), 4599-4609 (2000).
  36. Lu, B. Long-Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration). Stem Cells. 27 (9), 2126-2135 (2009).
  37. Zhao, T., Zhang, Z. -. N., Rong, Z., Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature. 474 (7350), 212-215 (2011).
  38. Eberle, D., Santos-Ferreira, T., Grahl, S., Ader, M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. Journal Of Visualized Experiments. , e50932 (2014).
  39. Huber, G. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 50, 5888-5895 (2009).
  40. Kim, K. H. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. Journal of Vision. 53 (8), 4644-4656 (2008).
  41. Pennesi, M. E. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53, 4644-4656 (2012).
  42. Fisher, S. K., Lewis, G. P., Linberg, K. A., Verardo, M. R. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Progress in Retinal And Eye Research. 24 (3), 395-431 (2005).
  43. Hu, Y. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Research. 48 (4), 186-191 (2012).
  44. Diniz, B. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest. Ophthalmol. Vis. Sci. 54 (7), 5087-5096 (2013).
check_url/pt/52247?article_type=t

Play Video

Citar este artigo
Westenskow, P. D., Kurihara, T., Bravo, S., Feitelberg, D., Sedillo, Z. A., Aguilar, E., Friedlander, M. Performing Subretinal Injections in Rodents to Deliver Retinal Pigment Epithelium Cells in Suspension. J. Vis. Exp. (95), e52247, doi:10.3791/52247 (2015).

View Video