Summary

Fremstilling af rekombinant humant IgG monoklonale antistoffer fra Immortaliserede Sorteret B-celler

Published: June 05, 2015
doi:

Summary

Synthesis of human monoclonal antibodies is the first step in studies aimed at unraveling the pathophysiological mechanisms of auto-antibody-mediated immune responses. We have developed a protocol to generate recombinant human immunoglobulin G (IgG) monoclonal antibodies from blood sorted B cells, including B-cell isolation, antibody cloning and in vitro synthesis.

Abstract

Finding new methods for generating human monoclonal antibodies is an active research field that is important for both basic and applied sciences, including the development of immunotherapeutics. However, the techniques to identify and produce such antibodies tend to be arduous and sometimes the heavy and light chain pair of the antibodies are dissociated. Here, we describe a relatively simple, straightforward protocol to produce human recombinant monoclonal antibodies from human peripheral blood mononuclear cells using immortalization with Epstein-Barr Virus (EBV) and Toll-like receptor 9 activation. With an adequate staining, B cells producing antibodies can be isolated for subsequent immortalization and clonal expansion. The antibody transcripts produced by the immortalized B cell clones can be amplified by PCR, sequenced as corresponding heavy and light chain pairs and cloned into immunoglobulin expression vectors. The antibodies obtained with this technique can be powerful tools to study relevant human immune responses, including autoimmunity, and create the basis for new therapeutics.

Introduction

Målet med denne artikel er at beskrive i detaljer en metode til at generere og karakterisere humane IgG monoklonale antistoffer opnået fra humane perifere mononukleære celler (PBMC'er).

Interessen for at studere humane antistoffer er vokset i mange forskellige forskningsområder. Især mange forskergrupper er interesseret i patologi forårsaget af auto-antistoffer 1-3. Vi har klonet og karakteriseret patogene autoantistoffer 1. Studiet af auto-antistoffer kan hjælpe med at identificere deres mål og udvikle terapeutiske strategier, fx ved hjælp af konkurrerende antistoffer 4. Desuden kan studiet af humane antistoffer også være af interesse i andre forskningsområder, dvs., at evaluere immunresponset efter vaccination 5, at karakterisere antistofprofil af individer, der blev udsat og blev resistente over for specifikke patogener 6 eller at undersøge, hvilke antistoffer er iden naturlige repertoire 7,12.

Adskillige teknikker er blevet udviklet til at generere rekombinante humane monoklonale antistoffer 8-12; de fleste af disse anvender fag-display og B-celle-immortalisering. Anvendelsen af fag-display er blevet grundigt anvendt for opdagelsen af nye antistoffer 13. Det har imidlertid en stor ulempe, nemlig at de tunge og lette kæde par af det humane immunoglobulin blive dissocieret i processen. Produktion af hybridomer med humane B-celler eller EBV transformation overvinder denne ulempe.

Vi bruger infektion af thymiske B celler med EBV i kombination med polyklonal B-celle-stimulering via Toll-like receptor 9 (TLR-9) 6,12.

I dette papir, vi beskriver i detaljer den teknologi, som vi bruger til udvikling af IgG humane antistoffer, med en komplet oversigt over alle de trin fra PBMC isolation til in vitro-antistof generation. Detteprotokol kan anvendes til analyse af enhver type human IgG profil. I vores laboratorium har B-celler, der producerer IgG-antistoffer med held blevet adskilt fra resten af ​​PBMC'er efter sortering. Halvtreds Weaver B-celler 8 kan derefter udplades i multi-brønds plader og udødeliggjort af EBV og TLR-9-aktivering, for klonal ekspansion af enkelte B-celler. Som fødeceller, har fibroblaster fra human embryonisk lungevæv blevet anvendt, cellelinje WI38, hvilket letter visualiseringen af ​​de immortaliserede B-celler. Fra disse B-celler, kan sekvenserne af de tunge og lette kæder af immunoglobulin opnås ved PCR, og de ​​antistoffer «gener klonet i immunoglobulin G ekspressionsvektorer og produceret in vitro. Med denne teknik kan enkelte antistoffer med nøjagtig det samme antistof sekvens fundet i donor undersøges.

Protocol

Informeret samtykke blev opnået fra deltagerne i undersøgelsen. Undersøgelsen blev godkendt af institutionelle etiske komité. 1. Isolering af perifere mononukleære blodceller (PBMC'er) Centrifuge 25 ml af deltagernes hepariniseret blod ved 900 xg i 15 min, så hurtigt som muligt efter, at blodet ekstraktion. Hvis der er mindre blod, skalere ned reagenserne i overensstemmelse hermed. Udfør alle de næste skridt i en hætte. Overfør serummet til et rent rør. De…

Representative Results

Sorteringen gating efter farvning CD22 og IgG positive celler er vist i figur 1 I dette billede området af de dobbelte positive celler -. B-celler, der producerer IgG-antistoffer – er valgt til at sortere alle disse celler i et separat rør. I analysen ca. 1% af de samlede PBMC'er svare til dette dobbelte positive population. Antallet af sorterede celler opnåede vil afhænge af antallet af celler opnået i afsnit 1. De forskellige resultater efter 5 ugers EBV immortali…

Discussion

I dette manuskript, er alle trinene for genereringen af ​​IgG-antistoffer fra humane PBMC'er præsenteres i detaljer. Denne protokol omfatter nogle fordele i forhold til tidligere publicerede teknikker. En af fordelene er, at antistoffet produceret holder de tunge og lette kæder, der svarer til den oprindelige pair i B-celle-klonen. Identifikationen af IgG antistoffer kan udføres i enhver type human donor, og der er ikke behov for forværring af immunresponset skyldes vaccination 5. Anvendelsen af f…

Declarações

The authors have nothing to disclose.

Acknowledgements

Forskning kontrakt Miguel Servet (ISCIII CD14 / 00.032) til (GN-G.). Fellowship fra Holland Organisation for Videnskabelig Forskning "Graduate School of Translationel Neurovidenskab Program" (022005019) til (CH).

Tilskud fra Prinses Beatrix Fonds (Project WAR08-12) og Foreningen Française contre les Myopati til (PM-M.); såvel som af en Veni Fellowship nederlandsk organisation for Videnskabelig Forskning (916.10.148) et fællesskab af Brain Foundation Nederlandene (FS2008 (1) -28) og Prinses Beatrix Fonds (Project WAR08-12) (til ML ).

Vi takker Jozien Jaspers for hendes hjælp i B-celle sortering ved flowcytometri.

Materials

Histopaque-1077  Sigma-Aldrich 10771 solution containing polysucrose and sodium diatrizoate
FACSAria II cell sorter  BD Biosciences 
96 U-bottom micro well plates  Costar 3799
Advanced Roswell Park Memorial Institute (RPMI) 1640 medium  Gibco, Life Technologies 12633-020
30% v/v EBV-containing supernatant of the B95-8 cell line   ATCC CRL-1612 3.4 x 108 copies/ml
CpG2006  Invivogen ODN 7909
Wi38 cells  Sigma-Aldrich 90020107
Interleukin-2 Roche  10799068001
ELISA plates Greiner Bio-One, Microlon 655092
AffiniPure F(ab')2 Fragment Goat Anti-Human IgG, Fcγ Fragment Specific (unconjugated) Jackson ImmunoResearch 109-006-008
4% non-fat dry milk (Blotting Grade Blocker)  Biorad 170-6404
Human IgG  Sigma I 2511 HUMAN IgG purified Immunoglobulin, 5.6 mg/ml
Goat F(ab)2 antihuman IgG Fcγ (conjugated with peroxidase (PO)) Jackson ImmunoResearch 109-036-008
ELISA reader (Perkin Elmer 2030)  Perkin Elmer  2030-0050
Peroxidase-conjugated AffiniPure Rabbit Anti-Human IgM, Fc5µ  Jackson ImmunoResearch 309-035-095
SuperScript III Cells Direct cDNA Synthesis System  Invitrogen  18080-200
Applied Biosystems (ABI) GeneAm PCR System 2700 Applied Biosystems
High Pure RNA Isolation Kit  Roche 11828665001
Reverse transcription system kit  Promega A3500
Recombinant Taq DNA Polymerase TAKARA R001A
Primers (2μl) Sigma
Ultrapure Agarose  Invitrogen 16500-500
100 bp ladder Invitrogen 15628-019
Quantity One 4.5.2 (Gel Doc 2000) Biorad 170-8100
QIAquick PCR purification kit QIAGEN 28106
BigDye Terminator v3.1 cycle sequencing kit  Applied Biosystems 4337455
0.1 ml reaction plate (MicroAMP Optical 96-well) Applied Biosystems 4346906
Genetic analyser ABI300  Applied Biosystems 4346906
DH5α competent cells (E. coli) Invitrogen 18263-012
pFUSEss-CHIg-hG1 (4493 bp) Invivogen pfusess-hchg1
pFUSEss-CHIg-hG4 (4484 bp)  Invivogen pfusess-hchg4
pFUSE2ss-CLIg-hk (3875 bp) Invivogen pfuse2ss-hclk
pFUSE2ss-CLIg-hl2 (3883 bp)  Invivogen pfuse2ss-hcll2
SOC medium Invitrogen 15544-034
LB-based agar medium supplemented with Zeocin (Fast-Media Zeo Agar) Invivogen fas-zn-s
Terrific Broth (TB)-based liquid medium supplemented with Zeocin (Fast-Media Zeo TB) Invivogen fas-zn-l
DNA Miniprep kit  Omega Bio Technology D6942-02
Nanodrop (ND1000 Spectrophotometer) Nanodrop
LB-based agar medium supplemented with Blasticidin (Fast-Media Blast Agar) Invivogen fas-bl-s
Terrific Broth (TB)-based liquid medium supplemented with Blasticidin (Fast-Media Blast TB) Invivogen fas-bl-l
EcoRI New England Biolabs R0101S 20,000 U/ml, in 10x NEBuffer EcoRI
NheI New England Biolabs R0131S 10,000 U/ml, in 10x NEBuffer 2.1
2-Log DNA ladder New England Biolabs N3200S 0.1-10.0 kb, 1,000 μg/ml
XmaI New England Biolabs R0180S 10,000 U/ml, in 10x CutSmart Buffer 
BsiWI New England Biolabs R0553S 10,000 U/ml, in 10x NEBuffer 3.1
AvrII New England Biolabs R0174S 5,000 U/ml, in 10x CutSmart Buffer 
FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific EF0651 1 U/µL, in 10x FastAP Buffer
DH5α competent cells  Invitrogen 18263-012
PE Mouse Anti-Human IgG BD Pharmingen 555787
anti-CD22, PerCP-Cy5.5, Clone: HIB22 Fisher scientific BDB563942
QIAprep Spin Miniprep Kit  QIAGEN 27106
BigDye Terminator v3.1 Applied Biosystems 4337455

Referências

  1. Vrolix, K., et al. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun. 52, 101-112 (2014).
  2. Yamashita, M., Katakura, Y., Shirahata, S. Recent advances in the generation of human monoclonal antibody. Cytotechnology. 55 (2-3), 55-60 (2007).
  3. Pereira, K. M., Dellavance, A., Andrade, L. E. The challenge of identification of autoantibodies specific to systemic autoimmune rheumatic diseases in high throughput operation: Proposal of reliable and feasible strategies. Clin Chim Acta. 437, 403-410 (2014).
  4. Losen, M., et al. Treatment of myasthenia gravis by preventing acetylcholine receptor modulation. Ann N Y Acad Sci. 1132, 174-179 (2008).
  5. Smith, K., et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc. 4 (3), 372-384 (2009).
  6. Fraussen, J., et al. A novel method for making human monoclonal antibodies. J Autoimmun. 35 (2), 130-134 (2010).
  7. Traggiai, E., et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 10 (8), 871-875 (2004).
  8. Fraussen, J., et al. Autoantigen induced clonal expansion in immortalized B cells from the peripheral blood of multiple sclerosis patients. J Neuroimmunol. 261 (1-2), 98-107 (2013).
  9. Yamashita, M., et al. Different individual immune responses elicited by in vitro immunization. Cytotechnology. 40 (1-3), 161-165 (2002).
  10. Hui-Yuen, J., Koganti, S., Bhaduri-McIntosh, S. Human B cell immortalization for monoclonal antibody production. Methods Mol Biol. 1131, 183-189 (2014).
  11. Tiller, T., et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods. 329 (1-2), 112-124 (2008).
  12. Lanzavecchia, A., Corti, D., Sallusto, F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 18 (6), 523-528 (2007).
  13. Traggiai, E. Immortalization of human B cells: analysis of B cell repertoire and production of human monoclonal antibodies. Methods Mol Biol. 901, 161-170 (2012).
  14. Strober, W., et al. Monitoring cell growth. Curr Protoc Immunol / edited by. John E. Coligan … [et al.]. Appendix 3, Appendix 3A (2001).
  15. Ibrahim, S. F., van den Engh, G. Flow cytometry and cell sorting. Adv Biochem Eng Biotechnol. 106, 19-39 (2007).
  16. Leith, J. T., Padfield, G., Faulkner, L. E., Quinn, P., Michelson, S. Effects of feeder cells on the X-ray sensitivity of human colon cancer cells. Radiother Oncol. 21 (1), 53-59 (1991).
  17. Hui-Yuen, J., McAllister, S., Koganti, S., Hill, E., Bhaduri-McIntosh, S. Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. J Vis Exp. (57), 3321 (2011).
  18. Smith, L. M., et al. Fluorescence detection in automated DNA sequence analysis. Nature. 321 (6071), 674-679 (1986).

Play Video

Citar este artigo
Nogales-Gadea, G., Saxena, A., Hoffmann, C., Hounjet, J., Coenen, D., Molenaar, P., Losen, M., Martinez-Martinez, P. Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells. J. Vis. Exp. (100), e52830, doi:10.3791/52830 (2015).

View Video