Summary

本地CA1γ振荡通过强直刺激生成

Published: August 14, 2015
doi:

Summary

振荡是基本的网络性能和疾病和药物调节。研究脑切片振荡允许在受控条件下隔离网络的表征。提供用于制备急性脑片的CA1唤起γ振荡协议。

Abstract

神经网络振荡是在健康和疾病的大脑活动的重要特征,并且可以通过一系列临床使用药物进行调制。的协议提供生成模型为研究CA1γ振荡(20 – 80赫兹)。这些γ振荡是稳定至少30分钟,取决于兴奋性和抑制性突触活动除了激活起搏器电流。 Tetanically刺激振荡具有许多重复且容易量化的特性,包括穗计数,振荡持续时间,延迟和频率时的网络状态报告。的电刺激振荡的优点包括稳定性,再现性和偶发采集使网络功能的鲁棒表征。可用于CA1γ振荡的这种模型来研究细胞机制,并系统地研究网络如何神经元活动的改变在疾病和毒品。疾病状态药理可通过使用脑切片的从转基因或介入的动物模型可容易地并入到能够选择的药物特异性靶向疾病的机制。

Introduction

这关联到行为状态不同频带内的脑网络的振荡出现。在啮齿类动物,海马θ振荡(5 – 10赫兹)在探索行为1,2观察,而γ振荡(20 – 80赫兹)与相关联的各种认知过程,包括感知和关注3,4。同步γ网络活动也牵连在病症如癫痫和精神分裂症5,6的病理。例如,γ振荡被认为对应于皮质癫痫病灶5,7,8的领域,并可以作为pharmacosensitivity或电阻,调查在癫痫研究9的两个重要方面的标记。

海马脑切片是已经广泛地用于研究网络活动10-12的模型。各种协议已被开发,以产生在脑切片γ振荡通常我nvolve药理调节,如低离子,4-氨基吡啶(4AP),荷包牡丹和红藻氨酸12-17。药理触发振荡的缺点是,他们随机出现后用药,不可靠产生或保持稳定的时间。电触发γ振荡克服许多这样的问题,也有被暂时锁定到刺激事件允许偶发记录和分析的优点。这里的协议描述为通过提供强直刺激的地层东方明珠Oriens海马切片CA1产生γ振荡。

Protocol

在老鼠身上所有实验均批准弗洛里学院动物伦理委员会。 1.设置切削脑片制备由(mM计)125胆碱氯,2.5氯化钾,0.4氯化钙2,6的MgCl 2,1.25的NaH 2 PO 4,26的NaHCO 3的切削液,20 D-葡萄糖饱和卡波金气(95%O 2 -5由(毫米)125氯化钠,2.5氯化钾,2-氯化钙2,2的MgCl 2,1.25的NaH 2 PO 4,26的NaHCO …

Representative Results

地层东方明珠Oriens的强直刺激产生的可再生的γ振荡(35.4±2.2赫兹), 见图3B。为了证明是本地网络CA1区CA3从投入是用弯曲32克针切割片在CA2区域内切断产生的振动。在切割片的振荡性质没有从未切割切片差异(P = 0.85;切割片6.16±1.1尖峰,每组6;未切割切片5.89±0.8尖峰,N = 6),表明该振荡机产生的。 这种方法的一个重要优点是记录的稳定性。当破伤风交付在5分钟…

Discussion

一个强大的方法来产生急性脑片CA1γ振荡描述。出现所产生的振动从本地电路能够控制和了解网络振荡12的神经生理学基础上更好的机会。 AMPA受体,GABA A受体,I H和T型Ca 2+通道所需的所有在此模型γ振荡。而这里介绍的地方CA1振荡可以产生强劲,这是依赖于确保脑片是健康的。一个关键步骤是快速去除从头骨的大脑,小心去除,然后迅速浸入冰冷的溶液中不会穿透…

Declarações

The authors have nothing to disclose.

Acknowledgements

Supported by APA to RJH, NHMRC program grant 400121 to SP, and NMHRC fellowship 1005050 to SP. CAR acknowledges the support of the ARC (FT0990628) and the DOWD fellowship scheme. The Florey Institute of Neuroscience and Mental Health is supported by Victorian State Government infrastructure funds.

Materials

4-(N-Ethyl-N-phenylamino)-1,2- dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) Sigma-Aldrich Z3777
Biuculline Sigma-Aldrich 14340
6-cyano-7-nitroquinoxa- line-2,3-dione (CNQX) Sigma-Aldrich C127
Nickel Sigma-Aldrich 266965
Carbamazepine Sigma-Aldrich C4024
(2R)-amino-5-phosphonopentano-ate (APV) Tocris Bioscience 0105
Retigabine ChemPacific 150812-12-7
Choline-Cl Sigma Aldrich C1879-5KG
KCl Sigma Aldrich P9333-500G
NaH2PO4 Sigma Aldrich S9638-250G
NaHCO3 Sigma Aldrich S6297-250G
NaCl Sigma Aldrich S7653-5KG
Glucose Sigma Aldrich G8270-1KG
CaCl2.2H2O Sigma Aldrich 223506-500G
MgCl2.6H2O Sigma Aldrich M2670-500G
Electrode glass Harvard Apparatus  GC150F-10
Concentric bipolar stimulating metal electrode  FHC CBBPF75
Digital Isolator Getting Instruments Model BJN8-9V1 
Model 1800 amplifier A-M systems Model 1800 amplifier
Digitizer National Intruments NI USB-6211
Vibrotome Leica VT1200s

Referências

  1. Buzsaki, G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 15 (7), 827-840 (2005).
  2. Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26 (4), 407-418 (1969).
  3. Bartos, M., Vida, I., Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8 (1), 45-56 (2007).
  4. Buzsáki, G., Wang, X. -. J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203-225 (2012).
  5. Kobayashi, K., et al. Cortical contribution to scalp EEG gamma rhythms associated with epileptic spasms. Brain Dev. 35 (8), 762-770 (2013).
  6. Andreou, C., et al. Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia. Schizophr Bull. , (2014).
  7. Alarcon, G., Binnie, C. D., Elwes, R. D., Polkey, C. E. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr. Clin. Neurophysiol. 94 (5), 326-337 (1995).
  8. Fisher, R. S., Webber, W. R., Lesser, R. P., Arroyo, S., Uematsu, S. High-frequency EEG activity at the start of seizures. J. Clin. Neurophysiol. 9 (3), 441-448 (1992).
  9. Kwan, P., Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342 (5), 314-319 (2000).
  10. Traub, R. D., Kopell, N., Bibbig, A., Buhl, E. H., LeBeau, F. E., Whittington, M. A. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21 (23), 9478-9486 (2001).
  11. Traub, R. D., Whittington, M. A., Buhl, E. H., Jefferys, J. G., Faulkner, H. J. On the mechanism of the gamma –> beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J. Neurosci. 19 (3), 1088-1105 (1999).
  12. Whittington, M. A., Stanford, I. M., Colling, S. B., Jefferys, J. G., Traub, R. D. Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. J. Physiol. 502 (3), 591-607 (1997).
  13. Avoli, M., Panuccio, G., Herrington, R., D’Antuono, M., de Guzman, P., Lévesque, M. Two different interictal spike patterns anticipate ictal activity in vitro. Neurobiol. Dis. 52, 168-176 (2013).
  14. Boido, D., Jesuthasan, N., de Curtis, M., Uva, L. Network Dynamics During the Progression of Seizure-Like Events in the Hippocampal-Parahippocampal Regions. Cereb Cortex. 24 (1), 162-173 (2014).
  15. Gloveli, T., Albrecht, D., Heinemann, U. Properties of low Mg2+ induced epileptiform activity in rat hippocampal and entorhinal cortex slices during adolescence. Brain Res. Dev. Brain Res. 87 (2), 145-152 (1995).
  16. McLeod, F., Ganley, R., Williams, L., Selfridge, J., Bird, A., Cobb, S. R. Reduced seizure threshold and altered network oscillatory properties in a mouse model of Rett syndrome. Neurociência. 231, 195-205 (2013).
  17. Bracci, E., Vreugdenhil, M., Hack, S. P., Jefferys, J. G. On the synchronizing mechanisms of tetanically induced hippocampal oscillations. J. Neurosci. 19 (18), 8104-8113 (1999).
  18. Main, M. J., Cryan, J. E., Dupere, J. R., Cox, B., Clare, J. J., Burbidge, S. A. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol. Pharmacol. 58 (2), 253-262 (2000).
  19. Wickenden, A. D., Yu, W., Zou, A., Jegla, T., Wagoner, P. K. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol. 58 (3), 591-600 (2000).
  20. Otto, J. F., Kimball, M. M., Wilcox, K. S. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol. Pharmacol. 61 (4), 921-927 (2002).
  21. Pomper, J. K., Graulich, J., Kovacs, R., Hoffmann, U., Gabriel, S., Heinemann, U. High oxygen tension leads to acute cell death in organotypic hippocampal slice cultures. Brain Res. Dev. Brain Res. 126 (1), 109-116 (2001).
  22. Hatch, R. J., Reid, C. A., Petrou, S. Enhanced in vitro CA1 network activity in a sodium channel β1(C121W) subunit model of genetic epilepsy. Epilepsia. 55 (4), 601-608 (2014).
  23. Lord, L. -. D., Expert, P., Huckins, J. F., Turkheimer, F. E. Cerebral energy metabolism and the brain/’s functional network architecture: an integrative review. J. Cereb. Blood Flow Metab. 33 (9), 1347-1354 (2013).
  24. Hájos, N., et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur. J. Neurosci. 29 (2), 319-327 (2009).
  25. Hájos, N., Mody, I. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J. Neurosci. Methods. 183 (2), 107-113 (2009).
  26. Boido, D., Jesuthasan, N., de Curtis, M., Uva, L. Network Dynamics During the Progression of Seizure-Like Events in the Hippocampal-Parahippocampal Regions. Cereb Cortex. 24 (1), 163-173 (2012).
  27. Antuono, M., Köhling, R., Ricalzone, S., Gotman, J., Biagini, G., Avoli, M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia. 51 (3), 423-431 (2010).
  28. Stenkamp, K., et al. Enhanced temporal stability of cholinergic hippocampal gamma oscillations following respiratory alkalosis in vitro. J. Neurophysiol. 85 (5), 2063-2069 (2001).
check_url/pt/52877?article_type=t

Play Video

Citar este artigo
Hatch, R. J., Reid, C. A., Petrou, S. Generation of Local CA1 γ Oscillations by Tetanic Stimulation. J. Vis. Exp. (102), e52877, doi:10.3791/52877 (2015).

View Video