Summary

诱导和缺血再灌注损伤评估中的Langendorff灌注鼠心

Published: July 27, 2015
doi:

Summary

The isolated rat heart is an enduring model for ischemia reperfusion injury. Here, we describe the process of harvesting the beating heart from a rat via in situ aortic cannulation, Langendorff perfusion of the heart, simulated ischemia-reperfusion injury, and infarct staining to confirm the extent of ischemic insult.

Abstract

The biochemical events surrounding ischemia reperfusion injury in the acute setting are of great importance to furthering novel treatment options for myocardial infarction and cardiac complications of thoracic surgery. The ability of certain drugs to precondition the myocardium against ischemia reperfusion injury has led to multiple clinical trials, with little success. The isolated heart model allows acute observation of the functional effects of ischemia reperfusion injury in real time, including the effects of various pharmacological interventions administered at any time-point before or within the ischemia-reperfusion injury window. Since brief periods of ischemia can precondition the heart against ischemic injury, in situ aortic cannulation is performed to allow for functional assessment of non-preconditioned myocardium. A saline filled balloon is placed into the left ventricle to allow for real-time measurement of pressure generation. Ischemic injury is simulated by the cessation of perfusion buffer flow, followed by reperfusion. The duration of both ischemia and reperfusion can be modulated to examine biochemical events at any given time-point. Although the Langendorff isolated heart model does not allow for the consideration of systemic events affecting ischemia and reperfusion, it is an excellent model for the examination of acute functional and biochemical events within the window of ischemia reperfusion injury as well as the effect of pharmacological intervention on cardiac pre- and postconditioning. The goal of this protocol is to demonstrate how to perform in situ aortic cannulation and heart excision followed by ischemia/reperfusion injury in the Langendorff model.

Introduction

既缺血再灌注的心脏反应底层的事件的澄清是在提高的需要主动脉阻断2心肌梗塞1和心脏外科手术的治疗至关重要。而在体内模型缺血再灌注损伤的允许非常有用的端点分析,它们不是有效用于研究缺血再灌注损伤的作用效果敏锐的实时性。此外, 体内缺血再灌注模型一般在再灌注时产生的梗塞面积显著的变化,并直接递送药物对心脏是具有挑战性的。一个的Langendorff离体心脏系统用于研究缺血再灌注损伤的利用允许对药物治疗,梗塞组织的均匀区,并直接向心肌瞬时递送药物的实时功能评估。

第一所记载的BŸ奥斯卡的Langendorff于1895年3,Langendorff离心脏是一个强大的模型研究缺血再灌注损伤,已用于缺血再灌注研究,为过去40年4,5。在这里,一些改动,以优化离体心脏的功能分析, 主动脉插管原地 ,而心脏跳动保证心脏不经历缺血预处理,这将改变缺血再灌注试验6的结果。为了便于此,气管切开术被执行,从而允许通风,并确保在手术过程中的鼠的生理稳定性。的心脏然后附着到玻璃水夹套螺旋柱通过它的Krebs Henseleit缓冲液经由逆行灌注直接传送到主动脉。甲生理盐水填充的气囊被插入左心室并连接到压力换能器,其允许压力的实时测量从心室的内ð计算的多个功能参数。在实验结束时,将心脏冲洗用冷盐水逮捕收缩和快速冷冻在液氮中,以使DNA,RNA和蛋白水平的下游分析。这样修改,灌注的Langendorff心脏在缺血再灌注损伤,随时作为一个有效的系统直接监测的药物干预的生理效应敏锐。

Protocol

这里列出的所有程序已经批准的机构动物护理和使用委员会在南卡罗来纳医科大学。这里所描述的实验是急性的,非生存实验。正因为如此,所以没有用眼膏,并且不需要无菌操作套件。安乐死放血过程中收获的心脏的实现。 1.实验准备设立无论是恒压或恒定流量的Langendorff灌注设备4。 制备4L的改良Krebs Henseleit缓冲液(以mM计:112 NaCl的,5氯化钾,1.2 Mg…

Representative Results

左心室气囊装置允许订约左心室( 图1)产生的压力的实时监测。如前面7描述的,该压迹可以用来计算许多心功能的参数。这些计算可以在基线阶段以及再灌注阶段进行,平均多条迹线的每个组内,并以确定的药理学干预是否导致心肌缺血预处理,如我们先前9做了比较。一个这样的参数是发展压,计算为收缩压和舒张末期压力之间的差。在正常灌注的大鼠心脏的开发…

Discussion

离体灌注大鼠心脏可以成功地用于研究的药理干预对心肌预处理在缺血再灌注损伤9的效果。但是,也有一些重要的步骤,即必须以确保可重复的结果进行标准化的步骤。维持37.4℃,系统内的温度是至关重要的,因为即使是轻度低温和高温可引起心脏预处理10,11。的总时间,从注射麻醉剂的流逝对心脏的切除必须保持到最小,因为长时间暴露于氯胺酮可与心脏预处理12干涉?…

Declarações

The authors have nothing to disclose.

Acknowledgements

本刊物是由南卡罗来纳州的临床与转化研究(SCTR)研究所的支持下,与一个学术家在南卡罗来纳州医科大学,美国国立卫生研究院/ NCATS授权号UL1 TR000062。进一步的支持是DRM提供VA优异奖BX002327-01。 DJH是由美国国立卫生研究院/ NCATS授权号TL1 TR000061和美国国立卫生研究院资助号T32 GM008716的支持。大海是由美国国立卫生研究院资助号T32 HL07260支持。

Materials

Sodium Chloride Sigma Aldrich S3014
Potassium Chloride Sigma Aldrich P9541
Magnesium Sulfate Sigma Aldrich 203726
Potassium Phosphate Dibasic Sigma Aldrich RES20765-A7
Calcium Chloride Dihydrate Sigma Aldrich C8106
Sodium Bicarbonate Sigma Aldrich S5761
D-Glucose Sigma Aldrich G8270
Octanoic Acid Sigma Aldrich C2875
2,3,5-triphenyltetrazolium chloride Sigma Aldrich T8877
Medical Pressure Transducer MEMSCAP SP844
Masterflex Peristaltic Pump Cole Parmer EW-07521-40
Masterflex Easy Load Pump Head Cole Parmer EW-07518-10
Heated circulating water bath Lauda M3
Tubing Flow Module Transonic TS410
Modular Research Console Transonic T402
Inline flow sensor Transonic ME2PXN
PowerLab Data Acquisition Device AD Instruments PL3508
LabChart data acquisition software AD Instruments MLU60/8

Referências

  1. Bainey, K. R., Armstrong, P. W. Clinical perspectives on reperfusion injury in acute myocardial infarction. American Heart Journal. 167 (5), 637-645 (2014).
  2. Beyersdorf, F. The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovascular Research. 83 (2), 262-268 (2009).
  3. Langendorff, O. Untersuchugen am überlebenden Säugethierherzen. Pflügers Archives. 61, 291-307 (1895).
  4. Bell, R. M., Mocanu, M. M., Yellon, D. M. Retrograde heart perfusion: The langendorff technique of isolated heart perfusion. Journal of Molecular and Cellular Cardiology. 50 (6), 940-950 (2011).
  5. Tyers, G. F., Todd, G. J., Neely, J. R., Waldhausen, J. A. The mechanism of myocardial protection from ischemic arrest by intracoronary tetrodotoxin administration. The Journal of Thoracic and Cardiovascular Surgery. 69 (2), 190-195 (1975).
  6. Murry, C. E., Jennings, R. B., Reimer, K. A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 74 (5), 1124-1136 (1986).
  7. Kolwicz, S. C., Tian, R. Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy. The Journal of Visualized Experiments. (42), (2010).
  8. Fishbein, M. C., et al. Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. American Heart Journal. 101 (5), 593-600 (1981).
  9. Aune, S. E., Herr, D. J., Mani, S. K., Menick, D. R. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. Journal of Molecular and Cellular Cardiology. 72, 138-145 (2014).
  10. Yellon, D. M., et al. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. Journal of Molecular and Cellular Cardiology. 24 (8), 895-907 (1992).
  11. Khaliulin, I., et al. Temperature preconditioning of isolated rat hearts–a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. The Journal of Physiology. 581 (Pt 3), 1147-1161 (2007).
  12. Molojavyi, A., et al. Effects of ketamine and its isomers on ischemic preconditioning in the isolated rat heart). Anesthesiology. 94 (4), 623-629 (2001).
  13. Asfour, H., et al. NADH fluorescence imaging of isolated biventricular working rabbit hearts. The Journal of Visualized Experiments. (65), (2012).
  14. Sill, B., Hammer, P. E., Cowan, D. B. Optical mapping of langendorff-perfused rat hearts. The Journal of Visualized Experiments. (30), (2009).
  15. Ferrera, R., Benhabbouche, S., Bopassa, J. C., Li, B., Ovize, M. One hour reperfusion is enough to assess function and infarct size with TTC staining in langendorff rat model. Cardiovascular Drugs and Therapy. 23 (4), 327-331 (2009).
  16. Sutherland, F. J., Shattock, M. J., Baker, K. E., Hearse, D. J. Mouse isolated perfused heart: Characteristics and cautions. Clinical and Experimental Pharmacology and Physiology. 30 (11), 867-878 (2003).
  17. Reichelt, M. E., Willems, L., Hack BA, ., Peart, J. N., Headrick, J. P. Cardiac and coronary function in the langendorff-perfused mouse heart model. Experimental Physiology. 94 (1), 54-70 (2009).
  18. Xie, M., et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 129 (10), 1139-1151 (2014).
check_url/pt/52908?article_type=t

Play Video

Citar este artigo
Herr, D. J., Aune, S. E., Menick, D. R. Induction and Assessment of Ischemia-reperfusion Injury in Langendorff-perfused Rat Hearts. J. Vis. Exp. (101), e52908, doi:10.3791/52908 (2015).

View Video