Summary

Engineered Gevasculariseerd Muscle Flap

Published: January 11, 2016
doi:

Summary

To date, thick tissue defects are typically reconstructed by applying autologous tissue flaps or engineered tissues. In this protocol, we present a new method for engineering vascularized tissue flap bearing an autologous pedicle, to serve as a substitute to autologous flaps.

Abstract

One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications.

Introduction

Buikwand defecten ontstaan ​​vaak na ernstige trauma's, de behandeling van kanker, brandwonden en verwijdering van geïnfecteerde mesh. Deze defecten vaak om significant weefsel verlies, waarvoor ingewikkelde chirurgische procedures en het presenteren van een grote uitdaging voor plastische reconstructie chirurgen 1-4. Tissue engineering onderzoekers op zoek naar nieuwe bronnen voor kunstmatige weefsels hebben verschillende materialen, mobiele bronnen en groeifactoren onderzocht. Succesvolle restauraties van verschillende weefsels, zoals trachea 5,6, blaas 7, 8 hoornvlies, bot 9 en de huid 10 door implantatie van gemanipuleerde weefsels werden eerder gerapporteerd. Echter, fabricage van een dikke gevasculariseerd gemanipuleerde weefsel, in het bijzonder voor de wederopbouw van grote gebreken, blijft een belangrijke uitdaging in tissue engineering.

Een van de belangrijkste factoren die de dikte van een levensvatbare weefselconstruct is de beheersing van zuurstoftoevoer naar de nadelentituent cellen. Als een beroep op diffusie construct dikte beperkt tot die van een zeer dunne laag. De maximale afstand tussen zuurstof en voedingsstoffen leveren capillairen in vivo ongeveer 200 urn, die correleert met de diffusie limiet van zuurstof 11,12. Onvoldoende vascularisatie kunnen leiden tot weefselischemie en escaleren weefsel resorptie of necrose 13.

Bovendien moet het ideale materiaal voor weefselreconstructie biocompatibel en niet-immunogeen zijn. Het moet ook in staat zijn het bevorderen van verdere integratie van gastheercellen met het biomateriaal en onderhouden van structurele integriteit. 14-16 verschillende biologische en synthetische 1,17,18 matrices zijn eerder onderzocht voor weefselreconstructie, maar hun gebruik blijft beperkt door een gebrek aan effectieve bloedtoevoer, infecties of weefsel onvoldoende sterkte.

In deze studie, een biocompatibele, cel-embedded steiger bestaat uit Food and Drug Administration (FDA) -gekeurd poly L-melkzuur (PLLA) / poly-melkzuur-co-glycolzuur (PLGA), werd geïmplanteerd rond de femorale slagader en ader (AV) vaartuigen van een naakt muis en gescheiden van het omliggende weefsel, zodat vascularisatie van alleen de AV vaten. Een week na de implantatie, het transplantaat levensvatbaar was, dik en goed doorbloed. Deze dikke gevasculariseerd weefsel met de AV vaten, werd vervolgens overgebracht als pedicled flap aan een abdominale volledige dikte defect in dezelfde muis. Een week na de overdracht, de flap levensvatbaar was, gevasculariseerd en goed geïntegreerd met het omliggende weefsel, rekening voldoende kracht om de buik ingewanden te ondersteunen. Dus de gemanipuleerde dikke, gevasculariseerd weefsel klep, voorzien van een autologe pedikel, presenteert een nieuwe werkwijze voor het repareren van full-thickness buikwand gebreken.

Protocol

Alle dierproeven werden goedgekeurd door het Comité van de Ethiek van de dierproeven van het Technion. Voor deze procedure werden athymische naakt muizen gebruikt voor immunologische afstoting te voorkomen. Bij gebruik van een ander type muis, dient de muizen worden geschoren voordat de chirurgische procedure en de toediening van cyclosporine (of een andere anti-afstoting vervangende) aanbevolen. 1. Steiger Voorbereiding en Cell Embedding Bereid scaffolds samengesteld als 1: 1 me…

Representative Results

Graft vascularisatie en perfusie in vivo De implantaten werden geïmplanteerd één of twee weken voorafgaand aan de overdracht als axiale flaps. Op één en twee weken na implantatie, grove observatie van de ent gebied bleek levensvatbaar en doorbloed weefsel enten. Deze transplantaten bleken sterk gevasculariseerd zijn, zoals bepaald met CD31 positieve immunokleuring (figuur 1A), en zeer geperfuseerd, zoals blijkt uit FITC-dextran staartader injectie en ultrasone …

Discussion

De vooruitgang in de tissue engineering is voldaan met een groeiende vraag naar vervangende weefsels voor de wederopbouw van verschillende soorten weefsel. Verschillende synthetische en biologische 1,17,18 14-16 materialen en fabricagemethoden zijn beoordeeld op hun vermogen om deze eisen te pakken. Echter, ondanks de vooruitgang in de klinische zorg en tissue engineering, het herstel van de volledige dikte buikwand gebreken blijft een uitdaging. Een weefsel voldoende voor de wederopbouw van een de…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by the FP7 European Research Council Grant 281501, ENGVASC.

Materials

small fine straight scissors Fine Science Tools (FST) 14090-09
spring scissors Fine Science Tools (FST) 15003-08
straight forceps with fine tip Fine Science Tools (FST) 11251-20
serrated forceps  Fine Science Tools (FST) 11050-10
needle holder Fine Science Tools (FST) 12500-12
Small vessel cauterizer  Fine Science Tools (FST) 18000-00
Duratears Alcon 5686
Sedaxylan Euravet DJ03
Clorketam 1000 Vetoquinol 4A0726B
Buprenorphine vetmarket B15100
4-0 silk sutures Assut sutures 647
6-0 polypropylene sutures Assut sutures 9351F
8-0 silk sutures Assut sutures 684568
Insulin syringe (6mm needle) BD 324911
Vevo 2100 high-resolution ultrasound system VisualSonics inc.
MS250 non-linear transducer VisualSonics inc.
Micromarker non-targeted contrast agent VisualSonics inc. VS-11694
tail vein catheter VisualSonics inc. VS-11912
Vevo 2100 software VisualSonics inc.
fluorescein isothiocyanate-conjugated dextran Sigma FD500S
Matlab Mathworks, MA, USA
Kimwipes Kimtech 34120
antigen unmasking solution Vector laboratories H-3300
anti-CD31 antibody Abcam  ab28364
biotinylated goat anti-rabbit (secondary) antibody Vector laboratories BA-1000
streptavidin-peroxidase Jackson  016-030-084
Mayer's hamatoxylin solution Sigma-Aldrich MHS-16
aminoethylcarbazole (AEC) substrate kit Life technologies, Invitrogen  00-2007
Vectamount Vector laboratories H-5501

Referências

  1. Engelsman, A. F., van der Mei, H. C., Ploeg, R. J., Busscher, H. J. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 28 (14), 2314-2327 (2007).
  2. De Coppi, P., et al. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng. 12 (7), 1929-1936 (2006).
  3. Shi, C., et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials. 32 (3), 753-759 (2011).
  4. Yezhelyev, M. V., Deigni, O., Losken, A. Management of full-thickness abdominal wall defects following tumor resection. Ann Plast Surg. 69 (2), 186-191 (2012).
  5. Macchiarini, P., Walles, T., Biancosino, C., Mertsching, H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 128 (4), 638-641 (2004).
  6. Macchiarini, P., et al. Clinical transplantation of a tissue-engineered airway. Lancet. 372 (9665), 2023-2030 (2008).
  7. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  8. Nishida, K., et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 351 (12), 1187-1196 (2004).
  9. Petite, H., et al. Tissue-engineered bone regeneration. Nat Biotechnol. 18 (9), 959-963 (2000).
  10. Banta, M. N., Kirsner, R. S. Modulating diseased skin with tissue engineering: actinic purpura treated with Apligraf. Dermatol Surg. 28 (12), 1103-1106 (2002).
  11. Vunjak-Novakovic, G., et al. Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews. 16 (2), 169-187 (2010).
  12. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews. 63 (4-5), 300-311 (2011).
  13. Lesman, A., Gepstein, L., Levenberg, S. Vascularization shaping the heart. Ann N Y Acad Sci. 1188, 46-51 (2010).
  14. Patton Jr, H., Berry, S., Kralovich, K. A. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. The Am J of Surg. 193 (3), 360-363 (2007).
  15. Menon, N. G., et al. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg. 50 (5), 523-527 (2003).
  16. Buinewicz, B., Rosen, B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 52 (2), 188-194 (2004).
  17. Bringman, S., et al. Hernia repair: the search for ideal meshes. Hernia. 14 (1), 81-87 (2010).
  18. Meintjes, J., Yan, S., Zhou, L., Zheng, S., Zheng, M. Synthetic biological and composite scaffolds for abdominal wall reconstruction. Exp rev of med dev. 8 (2), 275-288 (2011).
  19. Cheng, G., et al. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood. 118 (17), 4740-4749 (2011).
  20. Shandalov, Y., et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS of the USA. 111 (16), 6010-6015 (2014).
  21. Zhang, T. Y., Suen, C. Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27 (3), 236-239 (1984).
  22. Luna, L. G., Luna, L. G. . Manual of Histo Stain Meth ; of the Arm Forcs Inst of Path. , (1968).
  23. Choi, J. H., et al. Adipose tissue engineering for soft tissue regeneration. Tissue engineering. Part B, Reviews. 16 (4), 413-426 (2010).
  24. Bellows, C. F., Alder, A., Helton, W. S. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Exp rev of med dev. 3 (5), 657-675 (2006).
  25. Caspi, O., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 100 (2), 263-272 (2007).
  26. Kaufman-Francis, K., Koffler, J., Weinberg, N., Dor, Y., Levenberg, S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PloS one. 7 (7), e40741 (2012).
  27. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tiss eng. Part B, Reviews. 15 (2), 159-169 (2009).
  28. Koffler, J., et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. PNAS of the USA. 108 (36), 14789-14794 (2011).
  29. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tisseng. Part A. 16 (1), 115-125 (2010).
  30. Levenberg, S., et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23 (7), 879-884 (2005).
  31. Bearzi, C., et al. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell death & disease. 5, e1053 (2014).
  32. Zhang, M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J : official publication of the .Fed Am Soc Exp Biol. 21 (12), 3197-3207 (2007).
  33. Dvir, T., et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. PNAS. 106 (35), 14990-14995 (2009).
  34. Marsano, A., et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 34 (2), 393-401 (2013).
  35. Rufaihah, A. J., et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials. 34 (33), 8195-8202 (2013).
  36. Nillesen, S. T. M., et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J of Contr Release. 116 (2), e88-e90 (2006).
  37. Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 4, 1399 (2013).
  38. Tee, R., et al. Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tiss eng. Part A. (19-20), 1992-1999 (2012).
  39. Morritt, A. N., et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 115 (3), 353-360 (2007).
check_url/pt/52984?article_type=t

Play Video

Citar este artigo
Egozi, D., Shandalov, Y., Freiman, A., Rosenfeld, D., Ben-Shimol, D., Levenberg, S. Engineered Vascularized Muscle Flap. J. Vis. Exp. (107), e52984, doi:10.3791/52984 (2016).

View Video