Summary

Camada por camada de colágeno Deposição em microfluídicos para Microtissue Estabilização

Published: September 29, 2015
doi:

Summary

The creation of functional microtissues within microfluidic devices requires the stabilization of cell phenotypes by adapting traditional cell culture techniques to the limited spatial dimensions in microdevices. Modification of collagen allows the layer-by-layer deposition of ultrathin collagen assemblies that can stabilize primary cells, such as hepatocytes, as microfluidic tissue models.

Abstract

Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.

Introduction

Although microfluidics allows for the exquisite control of the cellular microenvironment, culturing cells, especially primary cells, within microfluidic devices can be challenging. Many traditional cell culture techniques have been developed to sustain and stabilize cell function when cultured in tissue culture plates, but translating those techniques to microfluidic devices is often difficult.

One such technique is the culture of cells on or sandwiched between collagen gels as a model of the physiological 3D cell environment.1 Type I collagen is one of the most frequently used proteins for biomaterials applications because of its ubiquity in extracellular matrix, natural abundance, robust cell attachment sites, and biocompatibility.2 Many cells benefit from 3D culture with collagen, including cancer cells3,45, microvascular endothelial cells6, and hepatocytes7, among others. While the use of collagen gels is easy in open formats, such as tissue culture plates, the limited channel dimensions and enclosed nature of microfluidic devices makes the use of liquids that gel impractical without blocking the entire channel.

To overcome this problem, we combined the layer-by-layer deposition technique8 with chemical modifications of native collagen solutions to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These layers can stabilize cell morphology and function similar to collagen gels and can be deposited on cells in microfluidic devices without blocking the channels with polymerized matrix. The goal of this method is to modify native collagen to create polycationic and polyanionic collagen solutions and to stabilize cells in microfluidic culture by depositing thin collagen matrix assemblies onto the cells. This technique has been used to stabilize the morphology and function of primary hepatocytes in microfluidic devices.9

Although layer-by-layer deposition has previously been reported with natural and synthetic polyelectrolytes10 to cover hepatocytes in plate culture11,12 and as a seeding layer for hepatocytes in microfluidic devices13,14, this method describes the deposition of a pure collagen layer on top of hepatocytes, mimicking the 3D collagen culture techniques. In this protocol, we use hepatocytes as example cells that can be maintained using 3D collagen layers. The many other types of cells that benefit from 3D culture in collagen may similarly benefit from culture after layer-by-layer deposition of an ultrathin collagen matrix assembly.

Protocol

1. Preparação da solução de colagénio nativo solúvel Prepare comprar ou 200 mg de acidificada, solúvel, de colagénio tipo I da cauda de ratos a 1-3 mg / 15 ml, utilizando protocolos de isolamento convencionais, tais como relatado por Piez et ai. Escala a quantidade de material de partida com base no volume final desejado de soluções de colagénio modificados. Aproximadamente 25-30 ml de fazer metilado e 25-30 ml de soluções de colagénio succiniladas, cada um em 3 mg …

Representative Results

Colagénio nativo pode ser modificado usando metilação e succinylation para criar soluções de colagénio policatiónicos e polianiónicos para uso na deposição de camada por camada. Succinylation modifica os grupos e-amino de colagénio nativo com grupos succinilo, metilação e modifica os grupos carboxilo de colagénio nativo com um grupo metilo (Figura 1A). Estas modificações às cadeias laterais de aminoácidos da proteína de colagénio alterar as curvas de titulação para pH das soluçõe…

Discussion

Ultrafinos assembleias de colágeno puro pode ser depositado em células carregadas ou superfícies de material usando deposição de camada por camada de colágenos modificados. Os resultados deste estudo demonstram que a metilação e succinylation de colagénio nativo criar soluções policatiónicos e polianiónicos de colagénio (Figura 1) que pode ser utilizado com a técnica de camada-a-camada para depositar conjuntos de matriz de colagénio ultrafinos em células (Figura 2) ou o…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the National Institutes of Health, including a microphysiological systems consortium grant from the National Center for Advancing Translational Sciences (UH2TR000503), a Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship (F32DK098905 for WJM) and pathway to independence award (DK095984 for AB) from the National Institute of Diabetes and Digestive and Kidney Diseases.

Materials

collagen type I, rat tail Life Technologies A1048301 option for concentrated rat tail collagen
collagen type I, rat tail Sigma-Aldrich C3867-1VL option for concentrated rat tail collagen
collagen type I, rat tail EMD Millipore 08-115 option for concentrated rat tail collagen
collagen type I, rat tail R%D Systems 3440-100-01 option for concentrated rat tail collagen
succinic anhydride Sigma-Aldrich 239690-50G succinylation reagent
anhydrous methanol Sigma-Aldrich 322415-100ML methylation reagent
sodium hydroxide Sigma-Aldrich S5881-500G pH precipitation reagent
hydrochloric acid Sigma-Aldrich 320331-500ML pH precipitation reagent
rat collagen type I ELISA Chondrex 6013 option for detecting collagen content
hydroxyproline assay kit Sigma-Aldrich MAK008-1KT option for detecting collagen content
hydroxyproline assay kit Quickzyme Biosciences QZBtotcol1 option for detecting collagen content

Referências

  1. Pedersen, J. A., Swartz, M. A. Mechanobiology in the third dimension. Ann Biomed Eng. 33 (11), 1469-1490 (2005).
  2. Glowacki, J., Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers. 89 (5), 338-344 (2008).
  3. Vescio, R. A., et al. In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture. PNAS. 84, 5029-5033 (1987).
  4. Chandrasekaran, S., Guo, N. -. h., Rodrigues, R. G., Kaiser, J., Roberts, D. D. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by α3β1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem. 274 (16), 11408-11416 (1999).
  5. Chen, S. S., et al. Multilineage differentiation of rhesus monkey embryonic stem cells in three‐dimensional culture systems. Stem Cells. 21 (3), 281-295 (2003).
  6. Whelan, M. C., Senger, D. R. Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem. 278 (1), 327-334 (2003).
  7. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog. 7 (3), 237-245 (1991).
  8. Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 277, 1232-1237 (1997).
  9. McCarty, W. J., et al. A novel ultrathin collagen nanolayer assembly for 3-D microtissue engineering: Layer-by-layer collagen deposition for long-term stable microfluidic hepatocyte culture. TECHNOLOGY. 2 (01), 67-74 (2014).
  10. Swierczewska, M., et al. Cellular response to nanoscale elastin-like polypeptide polyelectrolyte multilayers. Acta Biomater. 4 (4), 827-837 (2008).
  11. Kim, Y., Larkin, A. L., Davis, R. M., Rajagopalan, P. The design of in vitro liver sinusoid mimics using chitosan-hyaluronic acid polyelectrolyte multilayers. Tissue Eng Pt A. 16 (9), 2731-2741 (2010).
  12. Larkin, A. L., Rodrigues, R. R., Murali, T., Rajagopalan, P. Designing a Multicellular Organotypic 3D Liver Model with a Detachable, Nanoscale Polymeric Space of Disse. Tissue Eng Pt C. 19 (11), 875-884 (2013).
  13. Kidambi, S., et al. Patterned Co‐Culture of Primary Hepatocytes and Fibroblasts Using Polyelectrolyte Multilayer Templates. Macromol Biosci. 7 (3), 344-353 (2007).
  14. Janorkar, A. V., Rajagopalan, P., Yarmush, M. L., Megeed, Z. The use of elastin-like polypeptide-polyelectrolyte complexes to control hepatocyte morphology and function in vitro. Biomaterials. 29 (6), 625-632 (2008).
  15. Piez, K. A., Eigner, E. A., Lewis, M. S. The Chromatographic Separation and Amino Acid Composition of the Subunits of Several Collagens*. Bioquímica. 2 (1), 58-66 (1963).
  16. Tanford, C. The interpretation of hydrogen ion titration curves of proteins. Adv Protein Chem. 17, 69-165 (1962).
  17. Cayot, P., Tainturier, G. The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Anal Biochem. 249 (2), 184-200 (1997).
  18. Kakade, M. L., Liener, I. E. Determination of available lysine in proteins. Anal Biochem. 27 (2), 273-280 (1969).
  19. Seglen, P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 13, 29-83 (1976).

Play Video

Citar este artigo
McCarty, W. J., Prodanov, L., Bale, S. S., Bhushan, A., Jindal, R., Yarmush, M. L., Usta, O. B. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization. J. Vis. Exp. (103), e53078, doi:10.3791/53078 (2015).

View Video