Summary

Identificação de pares Kinase-substrato utilizando High Throughput Screening

Published: August 29, 2015
doi:

Summary

Protein phosphorylation is a central feature of how cells interpret and respond to information in their extracellular milieu. Here, we present a high throughput screening protocol using kinases purified from mammalian cells to rapidly identify kinases that phosphorylate a substrate(s) of interest.

Abstract

Nós desenvolvemos uma plataforma de rastreio para identificar proteínas quinases específicas de substratos fosforilados humanos que podem ser utilizados para elucidar novas vias de transdução de sinal. A nossa abordagem apresenta a utilização de uma biblioteca de proteínas quinases humano marcado com GST purificada e um substrato da proteína recombinante de interesse. Usámos esta tecnologia para identificar MAP / microtúbulo-regulação afinidade quinase 2 (MARK2) como a quinase para um local regulada por glucose, em reguladas pela CREB transcricional coativador 2 (CRTC2), uma proteína necessária para a proliferação das células beta, assim como a família de tirosina-quinases Axl como reguladores de metástases de células por fosforilação da proteína adaptadora ELMO. Descrevemos essa tecnologia e discutir como ela pode ajudar a estabelecer um mapa abrangente de como as células respondem a estímulos ambientais.

Introduction

Proteína modificações pós-traducionais (PTMs) são essenciais para a comunicação intracelular. Talvez o melhor estudada de todas as PTMs fosforilação é catalisada por proteínas quinases, que regulam uma miríade de funções de proteínas, incluindo a sua actividade bioquímica, localização subcelular, conformação, e a estabilidade. A identificação de sítios de fosforilação de proteínas alvo pode ser realizada através de mapeamento triptico fosfopéptido ou por técnicas-padrão de proteómica agora utilizando amostras enriquecidas para péptidos fosforilados 1,2. Enquanto três quartos do proteoma expressas são esperados para ser fosforilada 3 e um identificado 200.000 locais de fosforilação 5, com estimativas de até 1 milhão de 6, muitos deles não têm atribuído biologia, via de sinalização, ou proteína quinase.

Enquanto identificação de locais fosforilados é relativamente simples, uma comparativamente maior desafio éidentificar a cinase cognato (s) que tem como alvo estes locais, um processo que nos referimos como mapeamento de quinase: substrato pares. Várias abordagens para a identificação de quinase: substrato pares foram descritas, começando com uma quinase de interesse e procurando os seus substratos, ou a partir de um substrato de interesse e a tentativa de encontrar um modificador quinase 7-11 experimentalmente ou computacionalmente 12. Para identificar quinases para um substrato fosforilado conhecido, bioinformática pode ser usado para identificar proteínas que contêm uma sequência conservada curto de aminoácidos que flanqueiam o resíduo fosforilado (o local de consenso), bem como a identificação de quinases que formam um complexo com o substrato precipitável. No entanto, estas abordagens são demorados e muitas vezes não cumprem com sucesso.

Nós desenvolvemos uma abordagem funcional sistemático para identificar rapidamente quinases que fosforilam pode um determinado substrato 13. O ensaio tela produz excelente específicodade, com a seleção muito clara para os potenciais quinases cognatas. Dada a centralidade da fosforilação de sinalização biológica, a tela é útil para a descoberta em praticamente todos os celulares vias de sinalização 14-16. A tela envolve a realização de um ensaio de quinase em larga escala com uma biblioteca de proteínas quinases humanos. As cinases foram marcados com glutationa bacteriano S-transferase (GST) de proteínas e são purificados a partir de extractos de células de mamíferos, o que significa que as enzimas recombinantes – ao contrário do que as preparadas a partir de bactérias – são gerados na presença das proteínas quinases a montante muitas vezes necessários para a enzimas recombinantes para ter actividade in vitro. Com efeito, enquanto que a actividade da cinase de serina, treonina e tirosina necessária para a activação a jusante de quinase estão presentes na levedura 10, o genoma da levedura codifica 122 cinases de proteína, indicando que o kinome de mamífero, com mais de 500 genes 17, tornou-se significativamente mais complexa, a fim de regulate os processos originais para os organismos de ordem mais elevada. Além disso, o efeito de diferentes estímulos relevantes para a biologia celular e doença humana (tal como pequenas moléculas, factores de crescimento, hormonas, etc.) podem ser usados ​​para modular a actividade de quinase 14,15 num contexto apropriado.

Protocol

1. Preparação dos reagentes, placas, e Células Adicione 500 ml de tampão de lise: Tris 25 mM, pH 7,5, NaCl 150 mM, NaF 50 mM, 0,5 mM EDTA pH 8,0, 0,5% Triton X-100, 5 mM beta-glicerofosfato, 5% de glicerol. Armazenar a 4 ° C. Imediatamente antes da utilização, adicionar 1 mM de ditiotreitol (DTT), 1 mM de fluoreto de fenilmetil sulfonil (PMSF), e 1 mM de vanadato de sódio. Após este passo, PMSF não é necessária em qualquer tampão de lavagem. Adicione 20 ml de cinase 10X: Tris Buffer de …

Representative Results

Os resultados representativos de uma tela são mostrados na Figura 2. 180 quinases foram rastreadas utilizando um substrato de péptido marcado com GST correspondente aos aa 268-283 da CRTC2, bem como a proteína básica clássico ensaio de quinase substrato de mielina (MBP). Apenas duas cinases, MARK2 e o MARK3-quinase altamente relacionados com o peptídeo fosforilado CRTC2. MBP é incluído como um controlo interno em todos os ensaios, uma vez que contém muitos resíduos fosforiláv…

Discussion

Uma vez que as publicações originais que descrevem a abordagem 14,15, a biblioteca original de 180 GST-quinases foi ampliada para 420 membros, ou ~ 80% do kinome proteína humana. Com a biblioteca ampliada, o protocolo conforme descrito leva 4-5 dias e, em seguida, 1-4 dias para desenvolver filmes (como necessário), o que pode ser encurtado através da utilização de imagiologia com fósforo e o aumento do sinal digital. Há várias etapas-chave em que os cuidados devem ser tomados (veja

Declarações

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela concessão NSERC 386634. Gostaríamos de agradecer aos membros do Laboratório Screaton para discussões úteis.

Materials

Lysis buffer Made in house See Protocol step 1.1
10x kinase buffer Made in house See Protocol step 1.2
10x M-ATP Made in house See Protocol step 1.3
Human kinase plasmids Orfeome, Invitrogen, Origene GST-tagged in house
96 well plates Fisher Scientific CS003595
293T cells ATCC CRL-11268
DMEM  Fisher Scientific SH3002201 supplement with 100U/ml penicillin, 100ug/ml streptomycin, 10% fetal calf serum.
CO2 incubator Sanyo MCO-17AIC
15 cm cell culture dishes Fisher Scientific 877224
Reduced serum medium Invitrogen 22600-050
Lipid-based transfection reagent Invitrogen 11668-019
Automated liquid dispenser Thermo Scientific 5840300
Small cassette attachment Thermo Scientific 24073295
Standard cassette attachment Thermo Scientific 14072670
4mM pervanadate Made in house See Protocol step 3.1
0.25 M CaCl2 Made in house
Multichannel pipette (20-200 uL) Labnet p4812-200
Multichannel pipette (1-10 uL) Thermo Scientific 4661040
V-bottom 6-well plates Evergreen Scientific 290-8116-01V
Glutathione coated 96-well plates Fisher Scientific PI-15240
Hybridization oven Biostad 350355
GST tagged substrate Made in house
Myelin Basic Protein (MBP) Sigma M1891
Repeater pipette (1 mL) Eppendorf 22266209
32P gamma-ATP Perkin Elmer BLU502Z500UC
2X SDS lysis buffer (100 mL) Made in house See Protocol step 1.4
26-well precast TGX gels BioRad 567-1045 gel percentage required is dependent on the molecular weight of the substrate of interest
Coomassie stain Made in house 0.1% Coomassie R250, 10% acetic acid, 40% methanol
Coomassie destain Made in house 10% acetic acid, 20% methanol
Labeled gel containers Made in house Used plastic lids from empty tip boxes, just big enough to contain one gel
Whatman filter paper Fisher Scientific 57144
Cellophane sheets (2) BioRad 165-0963
Gel dryer Labconco 4330150
Double emulsion autoradiography film VWR IB1651454
Film cassette Fisher Scientific FBAC-1417
Intensifying screen Fisher Scientific FBIS-1417
Plate sealing rubber roller Sigma R1275

Referências

  1. Meisenhelder, J., Hunter, T., van der Geer, P. Phosphopeptide mapping and identification of phosphorylation sites. Curr Protoc Mol Biol. 18, Unit 18 19 (2001).
  2. Doll, S., Burlingame, A. L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS chem. 10, 63-71 (2015).
  3. Sharma, K., et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell rep. 8, 1583-1594 (2014).
  4. Cohen, P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci. 25, 596-601 (2000).
  5. Walsh, C. T. . Posttranslation Modification of Proteins: Expanding Nature’s Inventory. , (2006).
  6. Boersema, P. J., et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics. 9, 84-99 (2010).
  7. Hutti, J. E., et al. A rapid method for determining protein kinase phosphorylation specificity. Nat Methods. 1, 27-29 (2004).
  8. Johnson, S. A., Hunter, T. Kinomics: methods for deciphering the kinome. Nat Methods. 2, 17-25 (2005).
  9. Pawson, T., Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science. 300, 445-452 (2003).
  10. Zhu, H., et al. Analysis of yeast protein kinases using protein chips. Nat Genet. 26, 283-289 (2000).
  11. Shah, K., Shokat, K. M. A chemical genetic approach for the identification of direct substrates of protein kinases. Methods Mol Biol. 233, 253-271 (2003).
  12. Zou, L., et al. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC bioinform. 14, 247 (2013).
  13. Varjosalo, M., et al. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell. 133, 537-548 (2008).
  14. Jansson, D., et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A. 105, 10161-10166 (2008).
  15. Fu, A., Screaton, R. A. Using kinomics to delineate signaling pathways: control of CRTC2/TORC2 by the AMPK family. Cell Cycle. 7, 3823-3828 (2008).
  16. Abu-Thuraia, A., et al. Axl phosphorylates elmo scaffold proteins to promote rac activation and cell invasion. Mol Cell Biol. 35, 76-87 (2015).
  17. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., Sudarsanam, S. The protein kinase complement of the human genome. Science. 298, 1912-1934 (2002).
check_url/pt/53152?article_type=t

Play Video

Citar este artigo
Reeks, C., Screaton, R. A. Identification of Kinase-substrate Pairs Using High Throughput Screening. J. Vis. Exp. (102), e53152, doi:10.3791/53152 (2015).

View Video