Summary

レイヤ半導体ナノ構造のための集束イオンビーム技術と電気的評価を使用したオーミックコンタクト製作

Published: December 05, 2015
doi:

Summary

We describe the approaches for the device fabrication and electrical characterization of molybdenum diselenide (MoSe2) layer semiconductor nanostructures with different thicknesses. In addition, the fabrication of ohmic contacts for MoSe2-layer nanocrystals by the focused-ion beam deposition method using platinum (Pt) as a contact metal is described.

Abstract

容易に処理2次元(2D)の構造を有する層の半導体は、次世代の超薄型で柔軟な光・電子デバイスの開発のための新たな方向性を示唆して間接ツー直接バンドギャップ遷移と優れたトランジスタ性能を発揮します。強化された発光量子効率が大きく、これらの原子的に薄い二次元結晶で観察されています。しかし、量子閉じ込め厚さを超えて、さらにはマイクロメートルスケールでの寸法効果が期待されていないことはほとんど観察されていません。本研究では、モリブデン二セレン(モーゼ2)は、2または4の端末装置として製造されたナノメートル6-2,700の厚さの範囲を有する結晶をレイヤー。オーミックコンタクトの形成に成功コンタクト金属として白金(Pt)を用いた集束イオンビーム(FIB)蒸着法により達成されました。様々な厚さを有する層の結晶は、ダイシングテープを使用して、単純な機械的剥離により調製しました。電流 – 電圧曲線measuremenTSは、ナノ結晶層の導電率値を決定するために行きました。また、高分解能透過型電子顕微鏡は、選択された領域の電子回折およびエネルギー分散型X線分析は、FIB加工さモーゼ2デバイスの金属-半導体接触のインターフェースを特徴付けるために使用されました。アプローチを適用した後、モーゼ2 -layer半導体のための広い厚さ範囲の実質的な厚さに依存する導電率が観察されました。 2700から6 nmの厚さの減少に伴って、1 – 1センチ導電率が1500に4.6大きさの2以上のご注文によりΩを増加させました。また、温度依存性の導電率は、バルクの(36-38 meVで)に比べてかなり小さい3.5-8.5 meVでの活性化エネルギーを有するかなり弱い半導体挙動を示した薄いモーゼ2多層ことを示しました。 ProbaBLE表面優性輸送特性とモーゼ2における高い表面電子濃度の存在が提案されています。同様の結果は、MoS 2、およびWS 2などの他の層の半導体材料を得ることができます。

Introduction

そのようなMoS 2、モーゼ2、WS 2、およびWSE 2などの遷移金属ジカルコゲニド(のTMD)は、興味のある二次元(2D)の層構造と半導体特性1-3を有しています 。科学者らは最近、MoS 2の単層構造であるため、量子閉じ込め効果を実質的に強化された発光効率を示すことを発見しました。新しい直接バンドギャップ半導体材料の発見は、かなりの注目を集めている4-7。また、のTMDの簡単取り除か層構造は、2D材料の基本的な性質を研究するための優れたプラットフォームです。バンドギャップのない金属グラフェンとは異なり、のTMDは本来の半導体特性を持っており、1-2 eVの1,3,8の範囲のバンドギャップを有しています。 TMD 9の三元化合物およびグラフェンとこれらの化合物の統合の可能性の2D構造は前例のないオップを提供超薄型で柔軟な電子デバイスを開発するortunity。

モーゼ2 18 1 –約50 cm 2のV – 1秒 、グラフェンとは異なり、2DのTMDの室温電子移動度の値は、中程度のレベルである(1〜200センチメートル2 V – – 1秒1のMoS 2 10-17用)。 1– –グラフェンの最適な移動度の値が10,000 cm 2とVよりも高いことが報告されている。1 19-21しかしながら、TMDの単層は、優れたデバイス性能を示す半導体。例えば、10 6〜10 9 10,12,17,18,22までのオン/オフ比が極めて高いのMoS 2とモーゼ2単層または多層の電界効果トランジスタの展示、。従って、2DのTMDとの基本的な電気的性質を理解することが重要ですIRバルク材料。

しかし、層材料の電気的性質の研究は、部分的に結晶層のために良好なオーミックコンタクトを形成することが困難で妨げられてきました。 3つのアプローチ、シャドウマスク堆積(SMD)23、電子ビームリソグラフィ(EBL)24,25、および集束イオンビーム(FIB)堆積、26,27は、ナノ材料に電気コンタクトを形成するために使用されてきました。 SMDは、典型的には、マスクとして銅グリッドの使用を含むので、二つの接触電極間の間隔を10μmよりほとんど大きいです。 EBLとFIB堆積とは異なり、基板上の電極アレイの金属蒸着はSMD法への関心のナノ材料をターゲットまたは選択せずに実行されます。このアプローチは、金属パターンが正しく電極として個々のナノ材料の上に堆積されることを保証することはできません。 SMD方式の結果は、可能性の要素を有しています。 EBLとFIB堆積法が使用されているに走査型電子顕微鏡(SEM)システム。ナノ材料を直接観察し、電極の堆積のために選択することができます。加えて、EBLは、容易にライン幅100nmより小さい間隔コンタクト電極と金属電極を製造するために使用することができます。しかし、ナノ材料の表面にレジストの残留は、必然的に、金属電極とナノ材料との間に絶縁層が形成されるリソグラフィの間に残しました。したがって、EBLは、高い接触抵抗をもたらします。

FIB蒸着を介して電極製造の主な利点は、低い接触抵抗をもたらすことです。金属蒸着が定義された領域でイオンビームを用いて、有機金属前駆体の分解により行われるため、金属蒸着及びイオン衝撃が同時に起こります。これは、金属 – 半導体界面を破壊し、ショットキーコンタクトの形成を防ぐことができます。イオン衝撃はまた、hydrocarなどの表面汚染物質を除去することができ接触抵抗を減少させBONSと自然酸化物、。 FIB蒸着を介してオーミックコンタクトの製造は、異なるナノ材料27-29ために実証されています。また、FIB蒸着法で全体の製造手順は、EBLのそれよりも簡​​単です。

半導体層は、典型的には、異方性の高い電気伝導を示すように、層間方向の導電率は、面内方向30,31に比べて数桁低いです。この特性は、オーミックコンタクトを製造し、電気伝導度を測定することの難しさを増加させます。したがって、本研究では、FIB蒸着層の半導体ナノ構造の電気的特性を研究するために使用しました。

Protocol

モーゼ2層の結晶の1構造解析(図1のステップ1を参照してください) XRD測定手順ホルダー上の(石英粉末とバインダーと混合し、スライドガラス上に塗抹された)または結晶粉末(5×5×0.1〜10×10×0.5 mmの3の大きさの範囲を有する)モーゼ2層の結晶を取り付けます。 ホルダー表面に層の結晶表面に平行を確保するために、スライドガラスによって?…

Representative Results

厚さの異なる層のナノ材料の電気伝導度(G)、導電率(σ)の決定された値は、電気接点の品質に大きく依存しています。曲線- FIB堆積製作二端子モーゼのオーミックコンタクトは、2のデバイスは、電流-電圧(V I)を測定することによって特徴付けられます。室温I – 、異なる厚さを有する2つの端子モーゼ2ナノフレークデバイスに対するV曲線</e…

Discussion

ナノ結晶層におけるσ値とその寸法依存性の正確な決意は、電気接点の品質に大きく依存します。金属電極の堆積に用いられるFIB蒸着法は、試験全体を通して重要な役割を果たしました。よれば、電気的、構造的、及び組成物は、Pt金属とモーゼ2のアモルファス導電性合金の形成によって促進されたモーゼ2、MoS 2のデバイスに、FIB蒸着法を用いて、安定した再現性の高?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

RSC thanks the support of the National Science Council (NSC) of Taiwan under Project NSC 102-2112-M-011-001-MY3. YSH acknowledges the support of the NSC of Taiwan under Project NSC 100-2112-M-011-001-MY3.

Materials

HRTEM&SEAD FEI (http://www.fei.com/products/tem/tecnai-g2/?ind=MS) Tecnai™ G2 F-20
SEM&EDS HITACHI (http://www.hitachi-hitec.com/global/em/sem/sem_index.html) S-3000H
FIB FEI (http://www.fei.com/products/dualbeam/versa-3d/) Quanta 3D FEG
AFM BRUKER (http://www.bruker.com/products/surface-analysis/atomic-force-microscopy/dimension-icon/overview.html) Dimension Icon
XRD Bruker (https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/d2-phaser/learn-more.html) D2 PHASER X-ray Diffractometer
Raman Renishaw (http://www.renishaw.com/en/renishaw-enhancing-efficiency-in-manufacturing-and-healthcare–1030) inVia Raman microscope system
Keithley-4200 keithley (http://www.keithley.com.tw/products/dcac/currentvoltage/4200scs) 4200scs
ultralow current leakage cryogenic probe station Lakeshore Cryotronics (http://www.lakeshore.com/) TTP4
copper foil tape 3M (http://solutions.3m.com/wps/portal/3M/en_US/Electronics_NA/Electronics/Products/Product_Catalog/~/3M-Copper-Foil-Shielding-Tape-1182?N=4294300025+5153906&&Nr=AND%28hrcy_id%3A8CQ27CX0WMgs_F2LMWMM6M6_N2RL3FHWVK_GPD0K8BC31gv%29&rt=d) 1182
Ag paste Well-Being (http://www.gredmann.com/about.htm) MS-5000
Cu wire Guv Team (http://www.guvteam.com) ICUD0D01N
dicing tape Nexteck (http://www.nexteck-corp.com/tw/product-tape.html) contact vender
mica Centenary Electronic (http://100y.diytrade.com/sdp/307600/4/pl-1175840/0.html) T0-200
enamel wire Light-Tech Electronics (http://www.ltc.com.tw/product_info.php/products_id/57631) S.W.G #38

References

  1. Wilson, J. A., Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18 (73), 193-335 (1969).
  2. Ataca, C., Sahin, H., Ciraci, S. Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C. 116 (16), 8983-8999 (2012).
  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7 (11), 699-712 (2012).
  4. Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105 (13), 136805 (2010).
  5. Splendiani, A., et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10 (4), 1271-1275 (2010).
  6. Lebègue, S., Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B. 79 (11), 115409 (2009).
  7. Kuc, A., Zibouche, N., Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B. 83 (24), 245213 (2011).
  8. Yoffe, A. D. Layer compounds. Annu. Rev. Mater. Sci. 3, 147-170 (1993).
  9. Chen, Y., et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano. 7 (5), 4610-4616 (2013).
  10. Radisavljevic, B., Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nature Mater. 12 (9), 815-820 (2013).
  11. Zhang, Y., Ye, J., Matsuhashi, Y., Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12 (3), 1136-1140 (2012).
  12. Liu, H., Neal, A. T., Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano. 6 (10), 8563-8569 (2012).
  13. Ghatak, S., Pal, A. N., Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano. 5 (10), 7707-7712 (2011).
  14. Ong, Z. Y., Fischetti, M. V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys. Rev. B. 88 (16), (2013).
  15. Hwang, W. S., et al. Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 102 (4), 165316 (2013).
  16. Park, W., et al. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology. 24 (9), 095202 (2013).
  17. Wu, W., et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 102 (14), 142106 (2013).
  18. Larentis, S., Fallahazad, B., Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101 (22), 223104 (2012).
  19. Bolotin, K. I., et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (9), 351-355 (2008).
  20. Novoselov, K. S., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438 (7065), 197-200 (2005).
  21. Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 438 (7065), 201-204 (2005).
  22. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6 (3), 147-150 (2011).
  23. Chang, C. Y., et al. Electrical transport properties of single GaN and InN nanowires. J. Electro. Mater. 35 (4), 738-743 (2006).
  24. Calarco, R., et al. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano. Lett. 5 (5), 981-984 (2005).
  25. Soci, C., et al. ZnO nanowire UV photodectors with high internal gain. Nano Lett. 7 (4), 1003-1009 (2007).
  26. Nam, D. T., Fischer, J. E. Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. Nano Lett. 5 (10), 2029-2033 (2005).
  27. Chen, R. S., et al. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale. 5 (15), 6867-6873 (2013).
  28. Chen, R. S., Tang, C. C., Shen, W. C., Huang, Y. S. Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology. 25 (41), (2014).
  29. Huang, Y. H., Peng, C. C., Chen, R. S., Huang, Y. S., Ho, C. H. Transport properties in semiconducting NbS2 nanoflakes. Appl. Phys. Lett. 105 (9), (2014).
  30. Hu, S. Y., Liang, C. H., Tiong, K. K., Lee, Y. C., Huang, Y. S. Preparation and characterization of large niobium-doped MoSe2 single crystals. J. Crystal Growth. 285 (3), 408-414 (2005).
  31. Das, S., Appenzeller, J. Where does the current flow in two-dimensional layered systems. Nano Lett. 13 (7), 3396-3402 (2013).
  32. Cullity, B. D. . Elements of X-ray Diffraction. , (1978).
  33. Jadczak, J., et al. Composition dependent lattice dynamics in MoSxSe(2-x) alloys. J. Appl. Phys. 116 (19), 193505 (2014).
  34. Weber, W. H., Merlin, R. . Raman Scattering in Materials Science. , (2000).
  35. Tonndorf, P., et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express. 21 (4), 4908-4916 (2013).
  36. Hu, S. Y., Liang, C. H., Tiong, K. K., Lee, Y. C., Huang, Y. S. Preparation and characterization of large niobium-doped MoSe2 single crystals. J. Crystal Growth. 285 (3), 408-414 (2005).
  37. Hu, S. Y., Liang, C. H., Tiong, K. K., Huang, Y. S. Effect of Re dopant on the electrical and optical properties of MoSe2 single crystals. J. Alloys Compounds. 442 (1-2), 1-2 (2007).
  38. Bougouma, M., et al. Growth and characterization of large, high quality MoSe2 single crystals. J. Crystal Growth. 363, 122-127 (2013).
check_url/53200?article_type=t

Play Video

Cite This Article
Chen, R., Tang, C., Shen, W., Huang, Y. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures. J. Vis. Exp. (106), e53200, doi:10.3791/53200 (2015).

View Video