Summary

测量除草剂代谢的双子叶杂草价格与切下的叶片分析

Published: September 07, 2015
doi:

Summary

This manuscript describes how herbicide metabolism rates can be effectively quantified with excised leaves from a dicot weed, thereby reducing variability and removing any possible confounding effects of herbicide uptake or translocation typically observed in whole-plant assays.

Abstract

In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and –sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.

Introduction

在杂草除草剂抗性提出了一个严重的威胁到粮食和纤维1,2全球生产。目前,成千上万的抗性种群和生物型,从百余种杂草世界范围内已被记录在案并研究3。赋予植物除莠剂抗性的主要机制是除草剂靶位点的基因和蛋白质,包括影响除草剂-蛋白结合动力学或目标站点基因2的扩增的基因突变的改变。通过细胞色素P450单加氧酶(P450)或谷胱甘肽 S-转移酶(GST)酶升高活性代谢排毒赋予杂草除草剂抗性,这是明显的从目标网站为基础的机制2几种方式另一种机制。代谢型电阻具有显著后果为是否植物适合度代价又名健身处罚),可能会导致从除草剂抗性机制及米,以及关于用于单个解毒机制赋予在杂草种群1,2,4交叉或多除草剂抗性的潜力。通常,在植物的除草剂代谢可分为三个不同的阶段5。第一阶段涉及除草剂转化或活化如芳环或烷基的P450介导的羟基化,或 N -或O-脱烷基化反应,从而增加极性和部分除草剂解毒5,6。新引入的官能团的第一阶段通过的GSTs提供连接位点结合,以还原型谷胱甘肽或UDP相关的糖基转移酶在二5,7阶段为葡萄糖。例如,氟嘧磺隆-甲酯,在玉米中主要初始代谢物是羟基氟嘧磺隆-甲酯8,它可以被进一步代谢成羟基氟嘧磺隆-葡糖苷(第二阶段),然后输送到液泡长期贮存或进一步代谢亲cessing 5,6(第三期)。

Waterhemp( 苋tuberculatus)是一种难以控制的,双子叶一年生杂草,阻碍生产玉米( 玉米 ), 大豆 (Glycine max),棉花( 陆地棉 )在美国物种。 waterhemp遗传多样性的高度是由它的雌雄异株的生物学和长途风授粉便利,和一个女waterhemp厂月产能可达一百万种子9。这些种子很小,很容易传播,这自然赋予waterhemp一个有效的分散机制。 Waterhemp显示在整个生长季节9连续发芽,而它的种子可以经过几年的休眠发芽。 Waterhemp是C 4植物具有较高的增长速度比耕地种植系统10个最阔叶杂草。此外,众多waterhemp种群抗多种FAM除草剂3 ilies。

从伊利诺伊waterhemp(指定MCR)的人口是耐4-羟基苯丙酮酸双加氧酶(HPPD)的除草剂-inhibiting 11,如甲基磺草酮,以及莠去津和乙酰乳酸合酶(ALS)-inhibiting除草剂,包括氟嘧磺隆-甲基由于非目标站点为基础的机制12,13。一种不同的人口waterhemp的指定的ACR 14,其是氟嘧磺隆甲基抗性(由于在ALS基因中的突变)和阿特拉津抗性但对硝磺草酮敏感,并指定WCS 14 waterhemp人口是敏感的氟嘧磺隆-甲基,硝磺草酮,莠去津和分别在我们以前的研究12和当前实验的MCR用于比较(总结于表1)。最初的研究未检测到的改变在所述 HPPD基因序列或表达水平,或降低的硝磺草酮的摄取,在MCR人口与硝磺草酮敏感的人群相比,12时。然而,随着整个植物代谢研究证明了亲硝磺草酮除草剂显著较低水平在MCR与ACR和WCS,这与以前的表型应答相关的硝磺草酮11,12相比。

Waterhemp人口 缩写 表型硝磺草酮 硝磺草酮耐药机制 表型氟嘧磺隆 氟嘧磺隆抗性机制
麦克莱恩县耐 MCR 代谢* 代谢
亚当斯县,耐 ACR SENSIT香港专业教育学院在ALS 14靶位点突变
韦恩县敏感 WCS 灵敏的灵敏的

*非目标抗性的机制,比加强新陈代谢等,也可以赋予硝磺草酮阻力在MCR人口12。

表1:从伊利诺伊waterhemp种群在该研究中使用的描述。

除了 ​​确定在完整waterhemp幼苗除草剂代谢速率,不同的实验方法,开发并在我们以前的研究采用通过使用切waterhemp叶测定法12,以及各种细胞色素P450 抑制剂 (如,tetcyclacis和马拉硫磷)调查代谢。这种方法特别适用于waterhemp从PREVI在切下玉米氟嘧磺隆-甲基代谢的OU调查叶15中,由于切下的叶片检测尚未被报道用于进行除草剂代谢研究在双子叶植物。所述organophophosate杀虫剂马拉硫磷已经经常用于体内体外除草剂代谢研究,以指示参与的P450 16。例如,宽容和硝磺草酮的玉米快速代谢是由于P450催化环羟化,当马拉硫磷增加玉米的敏感性硝磺草酮17进行了验证。同样,马拉硫磷抑制的ALS抑制剂氟嘧磺隆,甲在切玉米叶片15新陈代谢。该切下的叶片技术的一个主要的优点是,所产生的数据是独立的全株易位图案,一个重要的因素,以评估全身,芽后除草剂代谢在植物时考虑。因此,这种方法允许定量和定性的代谢分析集中于单个处理过的叶子12。

甲植物克隆策略,与切下的叶片协议组合,先前在waterhemp用来进行代谢研究12。由于waterhemp(单独的男性和女性的植物),和大程度雌雄异株物种 9内的遗传多样性的异交性质,该协议确保了经过基因相同waterhemp秧苗的时程实验中进行分析。本文演示了切叶法测定双子叶杂草(waterhemp)除草剂代谢率的效用。母体除草剂的量剩余在每个时间点图1)通过非线性最小二乘回归分析确定,并适合用一个简单的一阶曲线,以估计为吸收除草剂的50%降解的时间( DT 50)。典型从反相高效液相色谱法(RP-HPLC)色谱图的显示为ALS抗性及敏感waterhemp人群,其中一个时间过程研究中表明父除草剂伴随生成极性代谢产物的消失( 图2)。我们的本文的重点是描述和演示的切下的叶片的试验中组合的效用与植物人克隆方法,用于确定在双子叶植物的除草剂代谢的精确和可重复的速率,使用均匀环标记(URL- 14℃)除草剂在3 waterhemp种群的不同在其全植物对HPPD-和ALS抑制除草剂( 表1)。

Protocol

1.植物材料,生长条件和营养克隆注:三个waterhemp种群进行了调查,本研究:MCR(由McLean县,IL),ACR(从亚当斯县,IL),和WCS(从韦恩县,IL),(表1)。 收集并暂停waterhemp种子0.1克L- -1琼脂:水的溶液在4℃下至少30天以促进种子发芽。注意:有些waterhemp人口都处于休眠状态,但是这一步有助于克服休眠,使种子发芽更均匀。 发芽每个wa…

Representative Results

要么WCS或ACR和MCR(图1)之间进行检测大的差异在硝磺草酮的代谢速率。在每个时间点,MCR已经比二甲基磺草酮敏感的人群中,WCS和ACR,这与以前的全植物表型反应11更迅速代谢硝磺草酮。通过从每个群体一个亲本植物克隆足够的植物,除草剂代谢的时间过程的分析是一致的和可重复的,由于每次课程12内部缺乏遗传变异性。例如,该时间过程中克隆系5 12硝磺?…

Discussion

本文描述的切叶方法已在研究氟嘧磺隆代谢的玉米叶片15以前使用过,但我们的研究结果表明,该协议也是有效的,准确的,和可重复的测量除草剂代谢双子叶杂草12。与全株研究相比在切下的叶片技术的一个主要的优点是,一个切下的叶片是独立的芽后的全株易位型态,全身性除草剂或植物或人群中除草剂的吸收差异。此外,环境的变化被减小,因为切下的叶片测定法在生长室?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Wendy Zhang, Austin Tom, Jacquie Janney, Erin Lemley, and Brittany Janney for assistance with plant growth and extractions, Dr. Anatoli Lygin for assistance with chromatographic analyses, and Syngenta Crop Protection for funding.

Materials

Agar Sigma-Aldrich A1296 for pre-germinating seeds
Potting medium Sun Gro Horticulture 49040233 for plant growth
Nutricote Agrivert  TOTAL BLEND 13-13-13 T100 slow-release fertilizer
Growth chamber E15 Controlled Environments Limited 20207 plant culturing
Tris base Fisher Scientific BP152-500 buffer for excised leaves
HCl (concentrated) Fisher Scientific A144500 adjust pH of buffer
Murashige and Skoog (MS) salts  Sigma-Aldrich M0404 incubation of excised leaves
Methanol Fisher Scientific A452-4 leaf washes after incubation
Acetone Sigma-Aldrich 179124 plant extractions
Acetonitrile (HPLC grade) Macron Fine Chemicals MKH07610 HPLC mobile phase
Formic acid  Mallinckrodt Analytical MK259205 acidify mobile phase pH
Micro-centrifuge Eppendorf 5417R 1.5 or 2.0 mL tubes
Centrifuge (temperature controlled) Eppendorf 5810R 15 or 50 mL tubes
Polypropylene centrifuge tube Corning Inc. 430790 15 mL, sterile
Rotary evaporator BÜCHI R200 concentrate plant samples
Liquid scintillation spectrometry (LSS) Packard Instruments 104470 quantify 14C
High-performance liquid chromatography Perkin Elmer N2910401 resolve herbicide metabolites
Flow scintillation analyzer  LabLogic System 1103303 for HPLC analysis of 14C
Hypersil Gold C18 column  Thermo-Scientific 03-050-522  reversed phase
Ultima-Flo M cocktail Perkin Elmer 6013579 for Flow-scintillation analyzer
Scintillation Cocktail (ScintiVerse BD) Fisher Scientific SX18 for LSS; biodegradable
Laboratory homogenizer Kinematica CH-6010  homogenize leaf samples

Referências

  1. Yu, Q., Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology. 166, 1106-1118 (2014).
  2. Powles, S. B., Yu, Q. Evolution in action: plants resistant to herbicides. Annual Reviews in Plant Biology. 61, 317-347 (2010).
  3. Heap, I., et al. Global perspective of herbicide-resistant weeds. Pest Management Science. 70 (9), 1306-1315 (2014).
  4. Délye, C., et al. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration. Weed Research. 51 (5), 433-437 (2011).
  5. Kreuz, K., Tommasini, R., Martinoia, E. Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiology. 111, 349-353 (1996).
  6. Riechers, D. E., Kreuz, K., Zhang, Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiology. 153, 3-13 (2010).
  7. Siminszky, B. Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews. 5 (2-3), 445-458 (2006).
  8. Fonné-Pfister, R., et al. Hydroxylation of primisulfuron by an inducible cytochrome P450-dependent monooxygenase system from maize. Pesticide Biochemistry and Physiology. 37 (2), 165-173 (1990).
  9. Steckel, L. E. The dioecious Amaranthus spp.: here to stay. Weed Technology. 21 (2), 567-570 (2007).
  10. Horak, M. J., Loughin, T. M. Growth analysis of four Amaranthus species. Weed Science. 48 (3), 347-355 (2000).
  11. Hausman, N. E., et al. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Management Science. 67 (3), 258-261 (2011).
  12. Ma, R., et al. Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiology. 163, 363-377 (2013).
  13. Guo, J., et al. Non-target-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus). Weed Science. in press, (2015).
  14. Patzoldt, W. L., Tranel, P. J., Hager, A. G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Science. 53 (1), 30-36 (2005).
  15. Kreuz, K., Fonné-Pfister, R. Herbicide-insecticide interaction in maize: malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pesticide Biochemistry and Physiology. 43 (3), 232-240 (1992).
  16. Correia, M. A., Ortiz de Montellano, P. R., Ortiz de Montellano, P. R. . Cytochrome P450: Structure, Mechanism, and Biochemistry. , 247-322 (2005).
  17. Hawkes, T. R., et al. Mesotrione: mechanism of herbicidal activity and selectivity in corn. Proceedings of the Brighton Crop Protection Conference – Weeds. 2, 563-568 (2001).
  18. Patzoldt, W. L., Tranel, P. J., Hager, A. G. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Protection. 21 (9), 707-712 (2002).
  19. Jalaludin, A., Yu, Q., Powles, S. B. Multiple resistance across glufosinate, glyphosate, paraquat and ACCase-inhibiting herbicides in an Eleusine indica population. Weed Research. 55 (1), 82-89 (2015).
  20. Iwakami, S., et al. Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiology. 165, 618-629 (2014).
check_url/pt/53236?article_type=t

Play Video

Citar este artigo
Ma, R., Skelton, J. J., Riechers, D. E. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay. J. Vis. Exp. (103), e53236, doi:10.3791/53236 (2015).

View Video