Summary

Mess Phagosomen pH durch ratiometrische Fluoreszenzmikroskopie

Published: December 07, 2015
doi:

Summary

Phagosomal pH influences phagosome maturation, oxidant production, phagosomal killing as well as antigen presentation. Here we describe a ratiometric method for measuring time-course and endpoint pH changes in individual phagosomes in living phagocytes using fluorescence microscopy.

Abstract

Phagozytose ist ein grundlegender Prozess, durch den angeborenen Immunzellen zu verschlingen Bakterien, apoptotischen Zellen oder andere Fremdkörper, um zu töten oder zu neutralisieren, die verschluckt Material oder um sie als Antigene zu präsentieren und zu initiieren adaptiven Immunantwort. Der pH der Phagosomen ist ein kritischer Parameter zur Regelung Spaltung oder Fusion mit Endomembranen und Aktivierung der proteolytischen Enzyme, Ereignisse, die phagozytischen Vakuolen in eine abbau Organell ausreifen. Zusätzlich wird die Translokation von H + zur Herstellung hoher Konzentrationen von reaktiven Sauerstoffspezies (ROS), die für eine effiziente Töten und Signalisierung zu anderen Wirtsgeweben erforderlich. Viele intrazelluläre Pathogene zu untergraben phagocytic Tötung durch Begrenzung phagosomalen Versauerung, der die Bedeutung der pH-Wert im Phagosom Biologie. Hier beschreiben wir eine ratiometrische Verfahren zur Messung phagosomalen pH in Neutrophilen mit Fluoresceinisothiocyanat (FITC) -markiertem Zymosan als phagozytischen targets, und Live-Cell-Imaging. Der Test basiert auf der Fluoreszenzeigenschaften von FITC, die durch saure pH abgeschreckt wird, wenn bei 490 nm angeregt wird, aber nicht, wenn sie bei 440 nm angeregt wird, so dass die Quantifizierung von einer pH-abhängigen Verhältnis statt der absoluten Fluoreszenz eines einzelnen Farbstoffs. Ein detailliertes Protokoll zur Durchführung einer in situ-Farbstoff Kalibrierung und Umwandlung des Verhältnisses realen pH-Werten ist ebenfalls vorgesehen. Single-Farbstoff ratiometrische Verfahren werden im Allgemeinen als überlegen einzigen Wellenlänge oder Dual-Farbstoff pseudo-ratiometrische Protokolle, da sie weniger empfindlich auf Störungen, wie beispielsweise Bleich sind, konzentrieren sich ändert, Laser-Variationen und unebene Kennzeichnung, die das Messsignal verfälschen. Dieses Verfahren kann leicht modifiziert werden, um in anderen pH phagozytischen Zelltypen zu messen und Zymosan durch jede andere aminhaltige Teilchen ersetzt werden, von inerten Kügelchen zu lebenden Mikroorganismen. Schließlich kann dieses Verfahren angepaßt werden, um die Verwendung von anderen fluoreszierenden Sonden empfindlich auf unterschiedliche pH-Bereiche oder andere phagosom machenal-Aktivitäten, so dass es eine allgemeine Protokoll für die funktionelle Bildgebung des Phagosomen.

Introduction

Phagocytosis, the process through which innate immune cells engulf large particles, evolved from the eating mechanism of single-celled organisms, and involves binding to a target, enveloping it with a membrane and pinching the membrane off to form a vacuole within the cytosol called a phagosome. While the phagosomal membrane is derived from the plasma membrane, active protein and lipid sorting, as well as fusion with endomembranes during phagosome formation, transform the phagosome into a distinct organelle within the cell with degradative properties that allow the killing, neutralization and breakdown of the ingested material1-3. This process, called phagosomal maturation, relies on the delivery of a host of proteolytic and microbicidal enzymes, including the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which transfers electrons into phagosomes producing the strong oxidant O2 and its derivative reactive oxygen species (ROS) 2,4.

The luminal pH of phagosomes has a profound influence on several events required for phagosome function. First, pH influences trafficking of endomembranes in general, as pH-dependent conformational changes of transmembrane trafficking regulators alters the recruitment of trafficking determinants such as Arfs, Rabs and vesicular coat-proteins, which in turn define which vesicles may fuse with phagosomes 5-8. Second, the ionic composition of the phagosomal lumen is also transformed as phagosomes mature, and some ion transporters, such as the Na+/H+ exchanger or ClC family Cl/H+ antiporters, which promote phagocytic function, rely on H+ translocation 9,10. Similarly, ROS production is intimately linked with phagosomal pH. ROS and its toxic oxidant byproducts have long been recognized as crucial for phagosomal killing in neutrophils 4,11,12, and have been shown to play critical roles in other phagocytes including macrophages, dendritic cells (DCs) and amoeba 13-16. The NADPH oxidase is an electrogenic enzyme that releases H+ in the cytosol as NADPH is consumed, and that requires the simultaneous transfer of H+ through companion HVCN1 channels alongside the transported electrons into the phagosomal lumen, in order to alleviate the massive depolarization that would otherwise lead to self-inhibition of the enzyme 17-21. Finally, several proteolytic enzymes have optimal activity at different pH, so time-dependent phagosomal pH changes can influence which enzymes are active and when. The importance of phagosomal pH is highlighted by organisms such as Mycobacterium tuberculosis, Franciscella tularensis and Salmonella typherium that subvert phagocytic killing at least in part by altering phagosomal pH 22-24.

In mammals the main phagocytes are neutrophils, macrophages and dendritic cells, and depending on cell type, time-dependent phagosomal pH changes can vary widely, and appear to play different roles. In macrophages a strong and rapid acidification mediated by the ATP-dependent proton pump vacuolar ATPase (V-ATPase) is one of the key factors mediating killing 25-27, resembling the mechanisms present in amoeba that use phagocytosis as an eating mechanism 28. In these cells activation of acidic proteases is thought to play a key role. In contrast, neutrophil killing relies more on ROS as well as HOCl produced by myeloperoxidase (MPO)11, and the pH remains neutral or alkaline during the first 30 min acidifying only later 29,30. Neutral pH has been suggested to favor the activity of oxidative proteases such as certain cathepsins. In DCs phagosomal pH is controversial, with some reporting acidification and others neutral or alkaline pH 31,32, but ROS and pH may profoundly influence the ability of these cells to present antigens to T cells, one of their main functions 33.

Importantly, hormones, chemokines and cytokines may produce signaling events that induce maturation and changes in phagocyte behavior, and in turn influence phagosomal pH 34,35. Similarly, drugs, for example the antimalarial chloroquine, which is also considered for anti-cancer therapies 36, may affect phagosomal pH and therefore immune outcomes. Thus, a variety of cell biologists, immunologists, microbiologists and drug developers may be interested in measuring phagosomal pH when seeking to understand the mechanisms underlying the effects of a particular genetic disruption, bioactive compound or microorganism on innate and adaptive immune responses.

Here we describe a method for measuring phagosomal pH in neutrophils that allowed us to show the importance of the HVCN1 channel in regulating neutrophil phagosomal pH 19. The method is based on the ratiometric property of fluorescein isothiocyanate (FITC) whose fluorescence emission at 535 nm is pH sensitive when excited at 490 nm but not 440 nm 37. When this dye is chemically coupled to a target, in this case zymosan, it can be followed using wide-field fluorescence microscopy, where cells are imaged as they phagocytose, and phagosomal pH changes are measured in real time as the phagosome matures. The actual pH is then gleaned by performing a calibration experiment where cells that have phagocytosed are exposed to solutions of different pH that contain the ionophores nigericin and monensin, that allow the rapid equilibration of the pH within phagosomes with the external solution. Ratio values are then compared to the known pH of solutions, a calibration curve is constructed by nonlinear regression and the resulting equation used to calculate pH from the ratio value.

Protocol

Ethik Hinweise: Alle Tier Manipulationen wurden in strikter Übereinstimmung mit den Richtlinien der Tierforschungsausschuss der Universität Genf durchgeführt. 1. Herstellung von Phagozytische Ziele Werden 20 mg getrocknetes Zymosan bis 10 ml steriler phosphatgepufferter Salzlösung (PBS). Wirbel und in einem kochenden Wasserbad für 10 min. Kühl und Zentrifugation bei 2.000 xg für 5 min. Entfernen Sie den Überstand resuspendieren in 1 ml PBS und beschalle…

Representative Results

Die folgenden sind repräsentative Ergebnisse für ein Experiment, wo die phagosomalen pH-Wert der primären Maus Neutrophile aus dem Knochenmark von Wildtyp oder isoliert Hvcn1 – / – Mäuse wurden verglichen. Für ein erfolgreiches Experiment ist es wichtig, genug Phagosomen im Sichtfeld während der gesamten Dauer des Zeitraffer-Film zu erhalten, bei gleichzeitiger Vermeidung zu viele Phagosomen, die später sein wird schwieriger Segment während der Bildanalyse. 1 schema</strong…

Discussion

Obwohl zeitaufwendiger als alternative Verfahren, wie Spektroskopie und FACS, die eine ähnliche Strategie unter Verwendung eines pH-empfindlichen Farbstoff, Ziele gekoppelt einzusetzen, sondern messen die durchschnittliche pH-Wert einer Population von Phagosomen, bietet mikroskopische mehrere Vorteile. Erste ist, dass innere und äußere gebunden, aber nicht internalisierten Partikel können leicht unterschieden werden, ohne andere Chemikalien, wie Trypan-Blau oder Antikörper hinzuzufügen, Abschreckhärtung oder Etik…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors are financially supported by the Swiss National Science Foundation through an operating grant N° 31003A-149566 (to N.D.), and The Sir Jules Thorn Charitable Overseas Trust through a Young Investigator Subsidy (to P.N.).

Materials

Zymosan A powder Sigma-Aldrich Z4250 Various providers exist
Fluorescein isothiocyanate Sigma-Aldrich F7250 Various providers exist
Anti-zymosan antibody (Zymosan A Bioparticles opsonizing reagent) Life Technologies Z2850 Sigma-Aldrich O6637 is an equivalent product. Alternatively 25% serum can be used as an opsonizing reagent.
4-Aminobenzoic hydrazide (4-ABH) Santa Cruz sc-204107 Toxic, use gloves, various providers exist
Diphenyleneiodonium chloride (DPI) Sigma-Aldrich D2926 Toxic, use gloves, various providers exist
Concanamycin A (ConcA) Sigma-Aldrich 27689 Toxic, use gloves, various providers exist
Nigericin Sigma-Aldrich N7143 Toxic, use gloves, various providers exist
Monensin Enzo ALX-380-026-G001 Toxic, use gloves, various providers exist
Phosphate buffered saline (PBS) Life Technologies 14200-075 Various providers exist
Hank's balance salt solution Life Technologies 14025092 Ringer's balanced salt solution or other clear physiological buffers may be substituted.
Sodium carbonate (Na2CO3) Sigma-Aldrich S7795 Various providers exist
2-(N-Morpholino)ethanesulfonic acid (MES) Sigma-Aldrich M3671  Various providers exist
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) Sigma-Aldrich H3375 Various providers exist
N-Methyl-D-glucamine (NMDG) Sigma-Aldrich M2004  Various providers exist
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) Sigma-Aldrich 3777 Various providers exist
 Tris(hydroxymethyl)aminomethane (Tris) Sigma-Aldrich T1503  Various providers exist
Potassium chloride (KCl) Sigma-Aldrich P9333 Various providers exist
Sodium chloride (NaCl) Sigma-Aldrich S7653 Various providers exist
Magnesium chloride (MgCl2) Sigma-Aldrich M8266 Various providers exist
Absolute Ethanol (EtOH) Sigma-Aldrich 2860 Various providers exist
Glass-bottom 35 mm petri dishes (Fluorodish) World Precision Instruments FD35-100 Ibidi µ-clear dishes or coverslips with appropriate imaging chambers may be sustituted
Sonicating water bath O. Kleiner AG A sonicator may be used instead, various instrument providers exist
Heamocytometer Marienfeld GmbH Various instrument providers exist
Widefield live imaging microscope Carl Zeiss AG Various instrument providers exist, but the microscope must be able to image 440/535 and 490/535 excitation/emission respective. Spinning disk confocal set-ups with brightfield capabilities may substituted, but zymosan tend to go out of focus more often.  
Peristaltic pump (Dynamax RP-1) Rainin Various instrument providers exist
pH meter Schott Gerate GmbH Various instrument providers exist
Manual Counter Milian SA Various instrument providers exist

Referências

  1. Yeung, T., Grinstein, S. Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev. 219, 17-36 (2007).
  2. Flannagan, R. S., Jaumouille, V., Grinstein, S. The cell biology of phagocytosis. Annu Rev Pathol. 7, 61-98 (2012).
  3. Fairn, G. D., Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33 (8), 397-405 (2012).
  4. Nunes, P., Demaurex, N., Dinauer, M. C. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic. 14 (11), 1118-1131 (2013).
  5. Binder, B., Holzhutter, H. G. A hypothetical model of cargo-selective rab recruitment during organelle maturation. Cell Biochem Biophys. 63 (1), 59-71 (2012).
  6. Hurtado-Lorenzo, A., et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol. 8 (2), 124-136 (2006).
  7. Weisz, O. A. Acidification and protein traffic. Int Rev Cytol. 226, 259-319 (2003).
  8. Huynh, K. K., Grinstein, S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev. 71 (3), 452-462 (2007).
  9. De Vito, P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol. 240 (2), 69-85 (2006).
  10. Moreland, J. G., Davis, A. P., Bailey, G., Nauseef, W. M., Lamb, F. S. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem. 281 (18), 12277-12288 (2006).
  11. Winterbourn, C. C., Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal. 18 (6), 642-660 (2013).
  12. Seredenina, T., Demaurex, N., Krause, K. H. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal. , (2014).
  13. Kotsias, F., Hoffmann, E., Amigorena, S., Savina, A. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal. 18 (6), 714-729 (2013).
  14. Grimm, M. J., et al. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J Immunol. 190 (8), 4175-4184 (2013).
  15. West, A. P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 472 (7344), 476-480 (2011).
  16. Bloomfield, G., Pears, C. Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci.. 116 (Pt 16), 3387-3397 (2003).
  17. Ramsey, I. S., Moran, M. M., Chong, J. A., Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature. 440 (7088), 1213-1216 (2006).
  18. El Chemaly, A., Demaurex, N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes?. Mol Cell Endocrinol. 353 (1-2), 82-87 (2012).
  19. El Chemaly, A., Nunes, P., Jimaja, W., Castelbou, C., Demaurex, N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol. , (2014).
  20. Decoursey, T. E. Voltage-gated proton channels. Compr Physiol. 2 (2), 1355-1385 (2012).
  21. Ramsey, I. S., Ruchti, E., Kaczmarek, J. S., Clapham, D. E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A. 106 (18), 7642-7647 (2009).
  22. Sturgill-Koszycki, S., et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 263 (5147), 678-681 (1994).
  23. Clemens, D. L., Lee, B. Y., Horwitz, M. A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 72 (6), 3204-3217 (2004).
  24. Alpuche-Aranda, C. M., Swanson, J. A., Loomis, W. P., Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A. 89 (21), 10079-10083 (1992).
  25. Lukacs, G. L., Rotstein, O. D., Grinstein, S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ ‘leak’. J Biol Chem. 266 (36), 24540-24548 (1991).
  26. Watanabe, K., Kagaya, K., Yamada, T., Fukazawa, Y. Mechanism for candidacidal activity in macrophages activated by recombinant gamma interferon. Infect Immun. 59 (2), 521-528 (1991).
  27. Ip, W. K., et al. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J Immunol. 184 (12), 7071-7081 (2010).
  28. Clarke, M., Maddera, L. Phagocyte meets prey: uptake, internalization, and killing of bacteria by Dictyostelium amoebae. Eur J Cell Biol. 85 (9-10), 1001-1010 (2006).
  29. Jankowski, A., Scott, C. C., Grinstein, S. Determinants of the phagosomal pH in neutrophils. J Biol Chem. 277 (8), 6059-6066 (2002).
  30. Segal, A. W., Geisow, M., Garcia, R., Harper, A., Miller, R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 290 (5805), 406-409 (1981).
  31. Savina, A., et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 126 (1), 205-218 (2006).
  32. Rybicka, J. M., Balce, D. R., Chaudhuri, S., Allan, E. R., Yates, R. M. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J. 31 (4), 932-944 (2012).
  33. Mantegazza, A. R., et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood. 112 (12), 4712-4722 (2008).
  34. Balce, D. R., Allan, E. R., McKenna, N., Yates, R. M. gamma-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem. 289 (46), 31891-31904 (2014).
  35. Sanjurjo, L., et al. The scavenger protein apoptosis inhibitor of macrophages (AIM) potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy. PLoS One. 8 (11), e79670 (2013).
  36. Yuan, Z., Zhi, L., Li-Juan, Z., Hong-Tao, X. The Utility of Chloroquine in Cancer Therapy. Curr Med Res Opin. , 1-12 (2015).
  37. Ohkuma, S., Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 75 (7), 3327-3331 (1978).
  38. El Chemaly, A., et al. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med. 207 (1), 129-139 (2010).
  39. Levine, A. P., Duchen, M. R., Segal, A. W. The HVCN1 channel conducts protons into the phagocytic vacuole of neutrophils to produce a physiologically alkaline pH. bioRxiv. , (2014).
  40. Al-Fageeh, M. B., Smales, C. M. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J. 397 (2), 247-259 (2006).
  41. Yui, N., et al. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 304 (1), C38-C48 (2013).
  42. Griffiths, G. On phagosome individuality and membrane signalling networks. Trends Cell Biol. 14 (7), 343-351 (2004).
  43. Poburko, D., Santo-Domingo, J., Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem. 286 (13), 11672-11684 (2011).
check_url/pt/53402?article_type=t

Play Video

Citar este artigo
Nunes, P., Guido, D., Demaurex, N. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy. J. Vis. Exp. (106), e53402, doi:10.3791/53402 (2015).

View Video