Summary

非プロトン性のLi-Oの電気化学的試験のプロトコルとキャラクタリゼーション<sub> 2</sub>バッテリー

Published: July 12, 2016
doi:

Summary

A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.

Abstract

We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.

Introduction

1996年に、アブラハムと江1は、多孔質炭素陰極、有機電解液、およびLi-金属アノードから成る第一の可逆非水性のLi-O 2バッテリーを報告しました。それ以来、何らかの他の既存のエネルギー貯蔵システムのそれを超えて、非常に高い理論エネルギー密度に、アノードにおけるリチウムの酸化による電流の流れとカソードにおける酸素の還元を(誘導のLi-O 2電池全体の反応のLi + + O 2 + E ↔のLi 2 O 2)は 、最近大きな関心を受けている1-8。

次の要件を有するカソード材料は、Li-O 2電池の高性能化のニーズに応えることができるだろう:(1)高速酸素拡散。 (2)良好な電気およびイオン伝導性を。 (3)高比表面積; (4)安定性。両方のカソードの表面積及び気孔率は、のために重要です。リチウムO 2電池の電気化学的性能9-12多孔質構造は、O 2でのLiカチオンの反応から生成された固体の放電生成物の付着を可能にします。より大きな表面積は、電気化学反応を促進電気触媒粒子を収容するためにそれ以上の活性部位を提供します。このような電極触媒は、13-17。基板の元の多孔質表面構造の保存と、基板と触媒粒子の良好な制御に強い接着を提供する特定の堆積法によってカソード材料に添加されるように調製された材料は、試験されます非プロトン性のLi-O 2電池のカソードとしてスウェージロック型細胞です。しかし、電池の性能は、カソード材料の性質に依存するだけでなく、非プロトン性電解質18〜22とリチウム金属アノードの種類のみならず。23-26より影響は、材料の量および濃度を含み、そしてP充電/放電試験に用いrocedure。適切な条件およびプロトコルを最適化し、電池材料の全体的な性能を向上させるであろう。

電気化学的試験の結果に加えて、電池性能にも自然のままの材料との反応生成物を特徴づけることによって評価することができる。27-33走査電子顕微鏡(SEM)は、カソード材料の表面の微細構造および形態を調査するために使用され放電生成物の進化。透過型電子顕微鏡(TEM)エッジ構造(XANES)の近くに、X線吸収、及びX線光電子分光法(XPS)は、特に、触媒ナノ粒子のために、素子の超微細構造、化学的状態、およびコンポーネントを決定するために用いることができます。高エネルギーX線回折(XRD)を直接結晶放電生成物を識別するために使用されます。可能な電解液の分解は減衰全反射フーリエ変換によって決定することができる変換赤外線(ATR-FTIR)及びラマンスペクトル。

この記事では、電池材料および付属品の準備、電気化学的性能試験、自然のままの材料および反応生成物の特性を含む非プロトン性のLi-O 2電池の通常の試験の体系的かつ効率的な配置を示しているプロトコルです。詳細なビデオプロトコルは、フィールドに新しい実践者は、Li-O 2電池の性能試験および特性評価に関連した多くの一般的な落とし穴を避けるのを助けることを意図しています。

Protocol

使用前に、関連するすべての化学物質等安全データシート(MSDS)を参照してください。これらの合成に使用される化学物質のいくつかは、急性毒性及び発がん性があります。ナノ材料は、そのバルク対応物に比べて付加的な危険性を有していてもよいです。工学的制御(ヒュームフード、グローブボックス)および個人用保護具(安全眼鏡、手袋、白衣、完全長ズボン、閉じたつま先の靴)…

Representative Results

図1aは、Li-O 2バッテリテストのスウェージロック型セルのセットアップを示しています。リチウムフィルム片は、アノード側に、ステンレス鋼棒上に配置されます。多孔質カソードは、アルミニウム管を通って、純粋なO 2に開放されています。ガラス繊維は、セパレータと、非プロトン性電解質の吸収材として使用されます。そして、Al?…

Discussion

空気へのLi-O 2電池システムの感度を考慮すると、特にCO 2および湿度、プロトコルのステップの多くは、干渉を低減し、副反応を避けるために必要です。例えば、スウェージロック型の細胞はO 2 <0.5ppmの及びH 2 O <0.5 ppm以下でアルゴンを充填したグローブボックス内で組み立てられます。そして、すべてのカソード材料、電解質溶媒及び塩、ガラス繊維、ス…

Declarações

The authors have nothing to disclose.

Acknowledgements

Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Materials

1-Methyl-2-pyrrolidinone (NMP), 99.5% Sigma-Aldrich 328634
Battery test system MACCOR Series 4000 Automated Test System
Dimethyl carbonate (DMC), ≥99% Sigma-Aldrich 517127
Ethyl alcohol, ≥99.5% Sigma-Aldrich 459844
Formaldehyde solution, 37 wt. % in H2O Sigma-Aldrich 252549
Graphitized Carbon black, >99.95% Sigma-Aldrich 699632
Iron(III) chloride (FeCl3), 97% Sigma-Aldrich 157740
Kapton polyimide tubing Cole-Parmer EW-95820-09
Kapton polymide tape Cole-Parmer EW-08277-80
Kapton window film SPEX Sample Prep 3511
Lithium Chip (99.9% Lithium) MTI Corporation EQ-Lib-LiC25
Lithium trifluoromethanesulfonate (LiCF3SO3) Sigma-Aldrich 481548
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% Aldrich 401471
Poly(vinylidene fluoride) (PVDF) Aldrich 182702
Potassium permanganate (KMnO4), ≥99.0%  Sigma-Aldrich 223468
Sodium hydroxide (NaOH), ≥97.0% Sigma-Aldrich 221465
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% Aldrich 172405
Toray 030 carbon paper ElectroChem Inc. 590637

Referências

  1. Abraham, K. M., Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., Tarascon, J. -. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
  3. Lu, J., et al. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 114, 5611-5640 (2014).
  4. Black, R., Adams, B., Nazar, L. F. Non-Aqueous and Hybrid Li-O2 Batteries. Adv. Energy Mater. 2, 801-815 (2012).
  5. Bruce, P. G., Hardwick, L. J., Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506-512 (2011).
  6. Christensen, J., et al. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 159, 1-30 (2012).
  7. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., Wilcke, W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 1, 2193-2203 (2010).
  8. Lu, J., Amine, K. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory. Energies. 6, 6016-6044 (2013).
  9. Ding, N., et al. Influence of carbon pore size on the discharge capacity of Li-O2 batteries. J. Mater. Chem. A. 2, 12433 (2014).
  10. Nimon, V. Y., Visco, S. J., De Jonghe, L. C., Volfkovich, Y. M., Bograchev, D. A. Modeling and Experimental Study of Porous Carbon Cathodes in Li-O2 Cells with Non-Aqueous Electrolyte. ECS Electrochem. Lett. 2, 33-35 (2013).
  11. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., Bruce, P. G. The Carbon Electrode in Nonaqueous Li-O2 Cells. J. Am. Chem. Soc. 135, 494-500 (2012).
  12. Park, J. -. B., Lee, J., Yoon, C. S., Sun, Y. -. K. Ordered Mesoporous Carbon Electrodes for Li-O2 Batteries. Acs Appl. Mater. Interfaces. 5, 13426-13431 (2013).
  13. Lei, Y., et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett. 13, 4182-4189 (2013).
  14. Lu, J., et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 5, 4895 (2014).
  15. Lu, J., et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
  16. Lu, J., et al. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276-8285 (2013).
  17. Luo, X., et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology. 26, 164003 (2015).
  18. Freunberger, S. A., et al. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
  19. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. J. Phys. Chem. C. 114, 9178-9186 (2010).
  20. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., Luntz, A. C. Solvents’ Critical Rope in Nonaqueous Lithium-Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
  21. Assary, R. S., et al. Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode. ChemPhysChem. 15, 2077-2083 (2014).
  22. Du, P., et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 15, 5572-5581 (2013).
  23. Aleshin, G. Y., et al. Protected anodes for lithium-air batteries. Solid State Ion. 184, 62-64 (2011).
  24. Assary, R. S., et al. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem. 6, 51-55 (2013).
  25. Aurbach, D., Zinigrad, E., Cohen, Y., Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405-416 (2002).
  26. Dey, A. N. Lithium Anode Film And Organic And Inorganic Electrolyte Batteries. Thin Solid Films. 43, 131-171 (1977).
  27. Lau, K. C., Lu, J., Luo, X., Curtiss, L. A., Amine, K. Implications of the Unpaired Spins in Li-O2 Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem. 80, 336-343 (2015).
  28. Lau, K. C., et al. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies. 8, 529-548 (2015).
  29. Black, R., et al. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 134, 2902-2905 (2012).
  30. Gallant, B. M., et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 6, 2518-2528 (2013).
  31. Lu, J., et al. Magnetism in Lithium-Oxygen Discharge Product. ChemSusChem. 6, 1196-1202 (2013).
  32. Xu, J. -. J., Wang, Z. -. L., Xu, D., Zhang, L. -. L., Zhang, X. -. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013).
  33. Zhong, L., et al. In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2O2. Nano Lett. 13, 2209-2214 (2013).
  34. . . Hitachi S-4700 SEM Training & Reference Guide. , (2015).
  35. . . SEM Hitachi S4700 User Manual. , (2015).
  36. Goldstein, J., et al. . Scanning Electron Microscopy and X-ray Microanalysis. , (2003).
  37. . X-Ray Photoelectron Spectrometer Operation Procedure Available from: https://nanofabrication.4dlabs.ca (2015)
  38. Haasch, R. T., Sardela, M. . Practical Materials Characterization. , 93-132 (2014).
  39. . . JEM-2100F Field Emission Transmission Electron Microscope. , (2015).
  40. Wen, J. -. G., Sardela, M. . Practical Materials Characterization. , 189-229 (2014).
  41. Williams, D. B., Carter, C. B. . Transmission Electron Microscopy. , (2009).
  42. . . Beamline 11-ID-C: High-energy Diffraction Beamline. , (2015).
  43. . . Beamline 11-ID-D: Sector 11 – Time Resolved X-ray Spectroscopy and Scattering. , (2015).
  44. Sardela, M. R., Sardela, M. . Practical Materials Characterization. , 1-41 (2014).
  45. . . Beamline 9-BM-B,C: X-ray Absorption Spectroscopy Beamline. , (2015).
  46. . . Beamline 20-BM-B: X-ray Absorption Spectroscopy Beamline. , (2015).
  47. Bunker, G. . Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. , (2010).
  48. . . Nicolet FT-IR User’s Guide. , (2015).
  49. . . Nicolet iS5 User Guide. , (2015).
  50. . . Renishaw inVia Raman Microscope Training Notebook. , (2015).
  51. . . Renishaw InVia Quick Operation Summary. , (2015).
  52. Mitchell, R. R., Gallant, B. M., Thompson, C. V., Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952-2958 (2011).
check_url/pt/53740?article_type=t

Play Video

Citar este artigo
Luo, X., Wu, T., Lu, J., Amine, K. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery. J. Vis. Exp. (113), e53740, doi:10.3791/53740 (2016).

View Video