Summary

Protokol for elektrokemisk Test og karakterisering på aprotiske Li-O<sub> 2</sub> Batteri

Published: July 12, 2016
doi:

Summary

A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.

Abstract

We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.

Introduction

I 1996 Abraham og Jiang 1 rapporterede den første reversible ikke-vandige Li-O 2 batteri bestående af en porøs carbon katode, en organisk elektrolyt, og en Li-metal anode. Siden da, på grund af sin ekstremt høje teoretiske energitæthed overstiger den af andre eksisterende energi lagersystemer, Li-O 2 batterier, som inducerer en strøm ved oxidation af lithium ved anoden og reduktionen af ilt ved katoden ( generelle reaktion Li + + O 2 + e ↔ Li 2 O 2), har modtaget betydelig interesse for nylig 1-8.

En katode materiale med følgende krav ville være i stand til at imødekomme behovene hos højtydende Li-O 2 batteri: (1) hurtig iltdiffusion; (2) god elektrisk og ioniske ledningsevne; (3) højt specifikt overfladeareal; og (4) stabilitet. Både overfladearealet og porøsitet af katoden er kritiske for. elektrokemiske ydeevne af Li-O 2 batterier 9-12 Den porøse struktur giver mulighed aflejring af faste udledning produkter frembragt fra reaktionen af Li kationer med O 2; og større arealer giver mere aktive steder at rumme elektrokatalytiske partikler, som fremskynder de elektrokemiske reaktioner. Sådanne elektrokatalysatorer tilsættes til katoden materiale ved visse afsætningsmetoder, som giver god vedhæftning til substratet og god kontrol af katalysatorpartiklerne, med bevarelse af den oprindelige porøse overfladestruktur af substratet. 13-17 De as-fremstillede materialer testes i Swagelok-type celler som katoden i aprotiske Li-O 2 batteri. Men udførelsen af cellen ikke kun afhænger af arten af katode materialer, men også af typen af det aprotiske elektrolyt 18-22 og Li-metal anode. 23-26 Flere påvirkninger omfatter mængden og koncentrationen af de materialer og pROCEDURE anvendes i afgift / udledning tests. Ordentlige forhold og protokoller vil optimere og forbedre den overordnede ydeevne batteri materialer.

Ud over resultaterne af den elektrokemiske test, kan batteriets ydeevne også vurderet ved karakterisere de uberørte materialer og reaktionsprodukterne. 27-33 Scanning elektronmikroskopi (SEM) anvendes til at undersøge overfladen mikrostruktur katodemateriale og morfologien evolution af decharge produkter. Transmissionselektronmikroskopi (TEM), X-ray absorption nær kanten struktur (XANES), og X-ray photoelectron spectroscopy (XPS) kan anvendes til at bestemme ultrastrukturen, kemisk tilstand, og komponent elementer, navnlig for den af ​​katalysatorpartikler nanopartikler. Høj energi røntgendiffraktion (XRD) anvendes til direkte at identificere de krystallinske udledning produkter. Mulig elektrolyt dekomponering kan bestemmes ved svækket total refleksion Fouriertransformationinfrarød (ATR-FTIR) og Raman spektre.

Denne artikel er en protokol, der viser en systematisk og effektiv arrangement af rutineundersøgelser af aprotiske Li-O 2 batteri, herunder udarbejdelse af batteri materialer og tilbehør, den elektrokemiske performance test, og karakterisering af uberørte materialer og reaktionsprodukter. Den detaljerede video protokollen er beregnet til at hjælpe nye praktikere på området undgå mange almindelige faldgruber forbundet med test ydeevne og karakterisering af Li-O 2 batterier.

Protocol

Se venligst alle relevante sikkerhedsdatablade (MSDS) før brug. Flere af de kemikalier, der anvendes i disse synteser er akut giftige og kræftfremkaldende. Nanomaterialer kan have yderligere risici i forhold til deres bulk-modstykke. Brug venligst alle passende sikkerhedsforanstaltninger, når du udfører en nanokrystallen reaktion herunder brug af teknisk kontrol (stinkskab, Handskerum) og personlige værnemidler (sikkerhedsbriller, handsker, kittel, fuld længde bukser, lukket-tå sko). Dele af de følgende procedur…

Representative Results

Figur 1A viser opsætningen af Swagelok-typen celle i Li-O 2 batteritest. Et stykke af lithium film anbringes på en rustfri stålstang ved anoden ende. Den porøse katode er åben for ren O 2 gennem et aluminiumsrør. Glas fiber anvendes som separator og en absorber af aprot elektrolyt; og Al-mesh anvendes som en strøm-kollektor. Hele Swagelok-typen celle er forseglet i et glas kammer fyldt med renhed oxygen ultrahøj. For fordybelse, er flere kar…

Discussion

I betragtning af følsomheden af Li-O 2 batterisystem til luft, især CO2 og fugt, masser af trin i protokollen er nødvendige for at reducere forstyrrende og for at undgå sidereaktioner. For eksempel er Swagelok-typen celle samlet i et handskerum fyldt med Ar med O 2 <0,5 ppm og H 2 O <0,5 ppm; og alle de katode materialer, elektrolyt opløsningsmiddel og salt, glasfiber, Swagelok dele, og glas kamre tørres før samling for at reducere forureningen fugt. Anoden ende e…

Declarações

The authors have nothing to disclose.

Acknowledgements

Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Materials

1-Methyl-2-pyrrolidinone (NMP), 99.5% Sigma-Aldrich 328634
Battery test system MACCOR Series 4000 Automated Test System
Dimethyl carbonate (DMC), ≥99% Sigma-Aldrich 517127
Ethyl alcohol, ≥99.5% Sigma-Aldrich 459844
Formaldehyde solution, 37 wt. % in H2O Sigma-Aldrich 252549
Graphitized Carbon black, >99.95% Sigma-Aldrich 699632
Iron(III) chloride (FeCl3), 97% Sigma-Aldrich 157740
Kapton polyimide tubing Cole-Parmer EW-95820-09
Kapton polymide tape Cole-Parmer EW-08277-80
Kapton window film SPEX Sample Prep 3511
Lithium Chip (99.9% Lithium) MTI Corporation EQ-Lib-LiC25
Lithium trifluoromethanesulfonate (LiCF3SO3) Sigma-Aldrich 481548
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% Aldrich 401471
Poly(vinylidene fluoride) (PVDF) Aldrich 182702
Potassium permanganate (KMnO4), ≥99.0%  Sigma-Aldrich 223468
Sodium hydroxide (NaOH), ≥97.0% Sigma-Aldrich 221465
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% Aldrich 172405
Toray 030 carbon paper ElectroChem Inc. 590637

Referências

  1. Abraham, K. M., & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
  3. Lu, J. et al. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 114, 5611-5640 (2014).
  4. Black, R., Adams, B., & Nazar, L. F. Non-Aqueous and Hybrid Li-O2 Batteries. Adv. Energy Mater. 2, 801-815 (2012).
  5. Bruce, P. G., Hardwick, L. J., & Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506-512 (2011).
  6. Christensen, J. et al. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 159, R1-R30 (2012).
  7. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., & Wilcke, W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 1, 2193-2203 (2010).
  8. Lu, J., & Amine, K. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory. Energies. 6, 6016-6044 (2013).
  9. Ding, N. et al. Influence of carbon pore size on the discharge capacity of Li-O2 batteries. J. Mater. Chem. A 2, 12433 (2014).
  10. Nimon, V. Y., Visco, S. J., De Jonghe, L. C., Volfkovich, Y. M., & Bograchev, D. A. Modeling and Experimental Study of Porous Carbon Cathodes in Li-O2 Cells with Non-Aqueous Electrolyte. ECS Electrochem. Lett. 2, A33-A35 (2013).
  11. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., & Bruce, P. G. The Carbon Electrode in Nonaqueous Li-O2 Cells. J. Am. Chem. Soc. 135, 494-500 (2012).
  12. Park, J.-B., Lee, J., Yoon, C. S., & Sun, Y.-K. Ordered Mesoporous Carbon Electrodes for Li-O2 Batteries. Acs Appl. Mater. Interfaces. 5, 13426-13431 (2013).
  13. Lei, Y. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett. 13, 4182-4189 (2013).
  14. Lu, J. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 5, 4895 (2014).
  15. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
  16. Lu, J. et al. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276-8285 (2013).
  17. Luo, X. et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology 26, 164003 (2015).
  18. Freunberger, S. A. et al. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
  19. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., & Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. J. Phys. Chem. C. 114, 9178-9186 (2010).
  20. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., & Luntz, A. C. Solvents' Critical Rope in Nonaqueous Lithium-Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
  21. Assary, R. S. et al. Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode. ChemPhysChem 15, 2077-2083 (2014).
  22. Du, P. et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 15, 5572-5581 (2013).
  23. Aleshin, G. Y. et al. Protected anodes for lithium-air batteries. Solid State Ion. 184, 62-64 (2011).
  24. Assary, R. S. et al. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem 6, 51-55 (2013).
  25. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405-416 (2002).
  26. Dey, A. N. Lithium Anode Film And Organic And Inorganic Electrolyte Batteries. Thin Solid Films. 43, 131-171 (1977).
  27. Lau, K. C., Lu, J., Luo, X., Curtiss, L. A., & Amine, K. Implications of the Unpaired Spins in Li-O2 Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem. 80, 336-343 (2015).
  28. Lau, K. C. et al. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies 8, 529-548 (2015).
  29. Black, R. et al. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 134, 2902-2905 (2012).
  30. Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 6, 2518-2528 (2013).
  31. Lu, J. et al. Magnetism in Lithium-Oxygen Discharge Product. ChemSusChem 6, 1196-1202 (2013).
  32. Xu, J.-J., Wang, Z.-L., Xu, D., Zhang, L.-L., & Zhang, X.-B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013).
  33. Zhong, L. et al. In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2O2. Nano Lett. 13, 2209-2214 (2013).
  34. Hitachi S-4700 SEM Training & Reference Guide. <http://chanl.unc.edu/files/2013/04/sem-user-guide_v1.pdf> (2015).
  35. Hitachi S4700 User Manual. <http://www.toyota-ti.ac.jp/Lab/Material/surface/naibu/SEM%20Hitachi%20S4700%20User%20Manual.doc.> (2015).
  36. Goldstein, J. et al. Scanning Electron Microscopy and X-ray Microanalysis. Springer: New York, NY (2003).
  37. Ray Photoelectron Spectrometer Operation Procedure. <https://nanofabrication.4dlabs.ca/uploads/documents/XPS_SOP.pdf> (2015).
  38. Haasch, R. T. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 3, 93-132, Springer: New York, NY (2014).
  39. Field Emission Transmission Electron Microscope. <http://cmrf.research.uiowa.edu/files/cmrf.research.uiowa.edu/files/JEOL%202100%20User%20Instructions.pdf> (2015).
  40. Wen, J.-G. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 5, 189-229, Springer: New York, NY (2014).
  41. Williams, D. B., & Carter, C. B. Transmission Electron Microscopy. Springer: New York, NY (2009).
  42. Beamline 11-ID-C: High-energy Diffraction Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=15> (2015).
  43. Beamline 11-ID-D: Sector 11 – Time Resolved X-ray Spectroscopy and Scattering. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=17> (2015).
  44. Sardela, M. R. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 1, 1-41, Springer: New York, NY (2014).
  45. Beamline 9-BM-B,C: X-ray Absorption Spectroscopy Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=82> (2015).
  46. Beamline 20-BM-B: X-ray Absorption Spectroscopy Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=32> (2015).
  47. Bunker, G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge University Press, 1st edition. (2010).
  48. Nicolet FT-IR User's Guide. <http://chemistry.unt.edu/~verbeck/LIMS/Manuals/6700_User.pdf> (2015).
  49. Nicolet iS5 User Guide. <http://madisonsupport.thermofisher.com/Molecular&UV8/Nicolet%20iS5%20User%20Guide.pdf> (2015).
  50. Renishaw inVia Raman Microscope Training Notebook. <https://depts.washington.edu/ntuf/facility/docs/raman_training_rev2_120507.pdf> (2015).
  51. Renishaw InVia Quick Operation Summary. <https://www.ccmr.cornell.edu/sites/default/files/facilities%20equipment/Raman_Operation_Procedures_July_14_2014.pdf> (2015).
  52. Mitchell, R. R., Gallant, B. M., Thompson, C. V., & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952-2958 (2011).
check_url/pt/53740?article_type=t

Play Video

Citar este artigo
Luo, X., Wu, T., Lu, J., Amine, K. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery. J. Vis. Exp. (113), e53740, doi:10.3791/53740 (2016).

View Video