Summary

的发展<em>体外</em>检测以确定间充质细胞将经历上皮 - 间质转化的收缩功能

Published: June 10, 2016
doi:

Summary

Here, we describe the development and application of a gel contraction assay for evaluating contractile function in mesenchymal cells that underwent epithelial-mesenchymal transition.

Abstract

Fibrosis is often involved in the pathogenesis of various chronic progressive diseases such as interstitial pulmonary disease. Pathological hallmark is the formation of fibroblastic foci, which is associated with the disease severity. Mesenchymal cells consisting of the fibroblastic foci are proposed to be derived from several cell sources, including originally resident intrapulmonary fibroblasts and circulating fibrocytes from bone marrow. Recently, mesenchymal cells that underwent epithelial-mesenchymal transition (EMT) have been also supposed to contribute to the pathogenesis of fibrosis. In addition, EMT can be induced by transforming growth factor β, and EMT can be enhanced by pro-inflammatory cytokines like tumor necrosis factor α. The gel contraction assay is an ideal in vitro model for the evaluation of contractility, which is one of the characteristic functions of fibroblasts and contributes to wound repair and fibrosis. Here, the development of a gel contraction assay is demonstrated for evaluating contractile ability of mesenchymal cells that underwent EMT.

Introduction

纤维化参与多种慢性进行性疾病,如间质性肺疾病,心脏纤维化,肝硬化,终端肾功能衰竭,系统性硬化,和自身免疫性疾病1的发病机制。间间质性肺疾病,特发性肺纤维化(IPF)是一种慢性进行性疾病,并显示预后差。 IPF的病理特点是成纤维细胞灶组成了与预后有关激活成纤维细胞和肌的发展。提出这样的肺成纤维细胞的起源是从几个间充质细胞,包括原驻地肺成纤维细胞和骨髓循环纤维细胞衍生的。最近,上皮-间质转化(EMT)已经提出了用间充质细胞2的形成相关联,并且有助于纤维化疾病的发病机制。

它被认为是电磁ŧ在胚胎发育过程中的重要作用,伤口愈合和癌症的进展,包括肿瘤侵袭和转移3。以下EMT的过程中,上皮细胞的上皮标记物,如E-钙粘蛋白的损失获得间充质细胞的能力,以及由间充质标志物,如波形蛋白和α平滑肌肌动蛋白(SMA)4,5的表达。以往的研究表明,EMT过程已与组织纤维化的发展在肾脏6和肺7被相关联的证据。此外,慢性炎症促进纤维化疾病8;此外,如炎性细胞因子如肿瘤坏死因子超家族成员14(TNFSF14; LIGHT),肿瘤坏死因子(TNF)-α和白细胞介素1β,已显示出提高的EMT 9-12。

胶原凝胶收缩试验,其中成纤维细胞嵌入型我一个基于胶原的细胞收缩测定胶原凝胶三维, 在体外模型收缩的评价理想。收缩是成纤维细胞的特征功能之一,并有助于正常的伤口修复和纤维化13。在该测定中,可以认为,成纤维细胞附着于I型通过整合素依赖性机制胶原被认为在一定条件下,以产生机械张力,并因此导致组织收缩。

这里,凝胶收缩测定的发展报告可以适于评估在经历EMT的细胞中采集收缩功能。这份报告表明,这种改进法是适用于评估在经历了EMT间质细胞收缩。

Protocol

1.准备肺上皮细胞的培养和培养A549人肺上皮细胞(贴壁细胞系)中的Dulbecco改进的Eagle培养基(DMEM),补充有10%胎牛血清(FBS),100IU / ml青霉素,和100μg/ ml链霉素。 卸下并丢弃从培养皿的细胞培养基,并用5洗一次 – 10毫升磷酸盐缓冲盐水(PBS)中。清洗后,立即吸出PBS。 加2ml胰蛋白酶/乙二胺四乙酸(EDTA)(0.05%),在37℃下孵育,5%CO 2的3分钟。 收集脱?…

Representative Results

EMT期间,上皮细胞失去上皮标记,如E-钙粘蛋白,并获得间充质标志物,如波形蛋白和α平滑肌肌动蛋白4,5的表达。与TGF-β1和肿瘤坏死因子αA549人肺上皮细胞的温育诱导EMT。正常A549细胞的外观是鹅卵石状的形状,三角形形状是上皮细胞( 图3A)的特性,但是刺激的TGF-β1和TNF-α后,外观改变为长纺锤形是类似于间充质细胞( 图3B)。 <p …

Discussion

在这项研究中开发的协议包括两个步骤。进行第一步骤以诱导EMT的,而第二个步骤是在凝胶收缩试验。因为它确认细胞发生EMT是很重要的,第2步提供了一个极好的补充,形态学和基因表达的变化。以往的研究表明,A549细胞的EMT诱导仅24,TGF-β1;然而,正如我们以前10日报道,TNF-α处理增强EMT和收购的间充质细胞标志物。它被认为是TGF-β介导EMT的机制是SMAD依赖性25。 TNFα增?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Tadashi Koyama for technical help. This work was supported in part by JSPS KAKENHI Grant Numbers 23249045, 15K09211, 15K19172; a grant to the Respiratory Failure Research Group from the Ministry of Health, Labour and Welfare, Japan; a grant for research on allergic disease and immunology, Japan.

Materials

DMEM sigma aldrich 11965-092 For A549 medium
FBS GIBCO 10437
Transforming Growth Factor-β1, Human, recombinant Wako Laboratory chemicals 209-16544
Recombinant Human TNF-α R&D systems 210-TA/CF
E-Cadherin (24E10) Rabbit mAb Cell Signaling Technology #3195 1:3000 dilution
Vimentin (D21H3) Rabbit mAb Cell Signaling Technology #5741 1:3000 dilution
Anti-α-Tubulin antibody sigma aldrich T9026 1:10000 dilution
Monoclonal Anti-Actin, α-Smooth Muscle antibody  sigma aldrich A5228 1:10000 dilution
Anti-N-cadherin antibody BD Transduction Laboratories #610920 1:1000 dilution
Anti-Mouse IgG, HRP-Linked Whole Ab Sheep (secondary antibody) GE Healthcare NA931-100UL 1:20000 dilution
Anti-Rabbit IgG, HRP-Linked Whole Ab Donkey (secondary antibody) GE Healthcare NA934-100UL 1:20000 dilution
blocking reagent GE Healthcare RPN418 2% in TBS-T
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lid corning #353046
100 mm cell culture dish TPP #93100
DMEM, powder life technologies 12100-046 For 4×DMEM
type 1 collagen gel Nitta gelatin Cellmatrix type I-A
24 well cell culture plate AGC TECHNO GLASS 1820-024
Gel Documentation System  ATTO AE-6911FXN Gel imager
gel analyzing software ATTO Densitograph, ver. 3.00 analysing software bundled with AE-6911FXN
Trypsin-EDTA (0.05%), phenol red life technologies 25300054
24 Well Plates, Non-Treated IWAKI 1820-024
Trypan Blue Solution, 0.4% life technologies 15250-061
RNA extraction kit Qiagen 74106
reverse transcriptase life technologies 18080044
real time PCR system Stratagene Mx-3000P
SYBR green PCR kit Qiagen 204145
Protease Inhibitor Cocktail (100X) life technologies 78429
PVDF membrane ATTO 2392390
protein assay kit bio-rad 5000006JA 
polyacrylamide gel ATTO 2331810
western blotting detection reagent GE Healthcare RPN2232
cold CCD camera ATTO Ez-Capture MG/ST
Trypsin inhibitor sigma aldrich T9003-100MG
Polyoxyethylene (20)Sorbitan Monolaurate Wako Laboratory chemicals 163-11512
polyoxyethylene (9) octyiphenyl ether Wako Laboratory chemicals 141-08321

Referências

  1. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. The Journal of pathology. 214, 199-214 (2008).
  2. Hardie, W. D., Glasser, S. W., Hagood, J. S. Emerging concepts in the pathogenesis of lung fibrosis. The American journal of pathology. 175, 3-16 (2009).
  3. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 125, 1795-1808 (2012).
  4. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  5. Kalluri, R., Weinberg, R. A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 119, 1420-1428 (2009).
  6. Forino, M., et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. International journal of experimental pathology. 87, 197-208 (2006).
  7. Yang, S., et al. Participation of miR-200 in pulmonary fibrosis. The American journal of pathology. 180, 484-493 (2012).
  8. Reynolds, H. Y. Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. American journal of respiratory and critical care medicine. 171, 98-102 (2005).
  9. Camara, J., Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & tissue repair. 3, 2 (2010).
  10. Kamitani, S., et al. Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. International archives of allergy and immunology. 155, 119-128 (2011).
  11. Mikami, Y., et al. Lymphotoxin beta receptor signaling induces IL-8 production in human bronchial epithelial cells. PloS one. 9, e114791 (2014).
  12. Yamauchi, Y., et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Experimental lung research. 36, 12-24 (2010).
  13. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology. 124, 401-404 (1994).
  14. Ramos, C., et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway . American journal of physiology. Lung cellular and molecular physiology. 299, L222-L231 (2010).
  15. Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., Du, W. S. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Bioscience reports. 35, (2015).
  16. Brinkmann, V., Kinzel, B., Kristofic, C. TCR-independent activation of human CD4+ 45RO- T cells by anti-CD28 plus IL-2: Induction of clonal expansion and priming for a Th2 phenotype. Journal of immunology. 156, 4100-4106 (1996).
  17. Krug, M. S., Berger, S. L. First-strand cDNA synthesis primed with oligo(dT). Methods in enzymology. 152, 316-325 (1987).
  18. Morozumi, M., et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of clinical microbiology. 44, 1440-1446 (2006).
  19. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 150, 76-85 (1985).
  20. Wiechelman, K. J., Braun, R. D., Fitzpatrick, J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry. 175, 231-237 (1988).
  21. Ursitti, J. A., Mozdzanowski, J., Speicher, D. W., et al. Electroblotting from polyacrylamide gels. Current protocols in protein science. Chapter 10, Unit 10.7 (2001).
  22. Kricka, L. J., Voyta, J. C., Bronstein, I. Chemiluminescent methods for detecting and quantitating enzyme activity. Methods in enzymology. 305, 370-390 (2000).
  23. Noguchi, S., et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 20, 4660-4672 (2014).
  24. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., Zhang, Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research. 6, 56 (2005).
  25. Chen, X., et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. The Journal of clinical investigation. 124, 3295-3310 (2014).
  26. Saito, A., et al. An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PloS one. 8, e56587 (2013).
  27. Dvashi, Z., et al. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. The American journal of pathology. 184, 2936-2950 (2014).
  28. Hallgren, O., et al. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. Journal of translational medicine. 10, 171 (2012).
  29. Kobayashi, T., et al. Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology. Lung cellular and molecular physiology. 306, L1006-L1015 (2014).
  30. Horie, M., et al. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Experimental lung research. 40, 222-236 (2014).
  31. Kohyama, T., et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. American journal of respiratory cell and molecular biology. 27, 375-381 (2002).
  32. Muir, A. B., et al. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental cell research. 330, 102-110 (2015).
  33. Zhong, Q., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. American journal of respiratory cell and molecular biology. 45, 498-509 (2011).
  34. Liu, X. Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell motility and the cytoskeleton. 65, 935-944 (2008).
check_url/pt/53974?article_type=t

Play Video

Citar este artigo
Mikami, Y., Matsuzaki, H., Takeshima, H., Makita, K., Yamauchi, Y., Nagase, T. Development of an In Vitro Assay to Evaluate Contractile Function of Mesenchymal Cells that Underwent Epithelial-Mesenchymal Transition. J. Vis. Exp. (112), e53974, doi:10.3791/53974 (2016).

View Video