Summary

Primære resultatvurdering i en Pig Model af akut myokardieinfarkt

Published: October 14, 2016
doi:

Summary

Pålidelig og nøjagtig resultat vurdering er nøglen til oversættelse af prækliniske terapier til klinisk behandling. Den nuværende Artiklen beskriver, hvordan man vurderer tre klinisk relevante primære effektmål parametre for hjertefunktionen og skader i en gris akut myokardieinfarkt model.

Abstract

Mortality after acute myocardial infarction remains substantial and is associated with significant morbidity, like heart failure. Novel therapeutics are therefore required to confine cardiac damage, promote survival and reduce the disease burden of heart failure. Large animal experiments are an essential part in the translational process from experimental to clinical therapies. To optimize clinical translation, robust and representative outcome measures are mandatory. The present manuscript aims to address this need by describing the assessment of three clinically relevant outcome modalities in a pig acute myocardial infarction (AMI) model: infarct size in relation to area at risk (IS/AAR) staining, 3-dimensional transesophageal echocardiography (TEE) and admittance-based pressure-volume (PV) loops. Infarct size is the main determinant driving the transition from AMI to heart failure and can be quantified by IS/AAR staining. Echocardiography is a reliable and robust tool in the assessment of global and regional cardiac function in clinical cardiology. Here, a method for three-dimensional transesophageal echocardiography (3D-TEE) in pigs is provided. Extensive insight into cardiac performance can be obtained by admittance-based pressure-volume (PV) loops, including intrinsic parameters of myocardial function that are pre- and afterload independent. Combined with a clinically feasible experimental study protocol, these outcome measures provide researchers with essential information to determine whether novel therapeutic strategies could yield promising targets for future testing in clinical studies.

Introduction

Hjertesvigt med reduceret uddrivningsfraktion (HFrEF) tegner sig for omkring 50% af alle hjertesvigt sager, der påvirker en anslået 1 – 2% af mennesker i den vestlige verden en. Dens mest udbredte årsag er akut myokardieinfarkt (AMI). Som akut dødelighed efter AMI er faldet betydeligt på grund af øget bevidsthed og forbedrede behandlingsmuligheder, har fokus flyttet mod sin kroniske følgesygdomme; den mest fremtrædende væsen HFrEF 2,3. Sammen med stigende sundhedsudgifter 4, den voksende epidemi af hjertesvigt understreger behovet for nye diagnostik og behandlinger, der kan studeres i et stærkt translationel svin model af negativ remodeling efter AMI som tidligere beskrevet 5.

Begge, determinanter (fx infarkt størrelse) og funktionelle vurderinger (fx ekkokardiografi) af negativ remodeling anvendes ofte til effekten afprøvning af nye lægemidler, der angiver behovet for reliable og relativt billige metoder. Formålet med den aktuelle dokument er at imødekomme dette behov ved at indføre vigtige og pålidelige effektmål for effektivitetsforsoegene i en gris model af akut myokardieinfarkt. Disse omfatter infarkt størrelse (IS) i forhold til området med risiko (AAR), 3D transesophageal ekkokardiografi (3D-TEE) og detaljeret optagelse-baserede tryk-volumen (PV) erhvervelse loop.

Infarkt størrelse er den vigtigste faktor for negativ remodellering og overlevelse efter AMI 6. Selv rettidig reperfusion af iskæmisk myocardium kan redde reversibelt tilskadekomne cardiomyocytter og begrænse infarktstørrelse, reperfusion selv forårsager yderligere skade ved produktion af oxidativ stress og en uforholdsmæssig inflammatorisk respons (iskæmi-reperfusion skade (IRI)) 7. Derfor IRI er blevet identificeret som et lovende terapeutisk mål. Evnen af ​​hidtil ukendte terapeutiske midler til at mindske infarktstørrelse kvantificeres ved at vurdere infarktstørrelse i forholdtil området med risiko (AAR). AAR kvantificering er obligatorisk at korrigere for inter-individuel variation i koronar anatomi dyremodeller, som en større AAR fører til en større absolut infarkt størrelse. Da infarkt størrelse er direkte relateret til hjerte-ydeevne og myokardie kontraktilitet, kan variationer i AAR påvirke studere resultatmål uanset behandlingsmodaliteter 8.

Tre-dimensionel transesofageal ekkokardiografi (3D-TEE) er en sikker, pålidelig og, vigtigst af alt, klinisk anvendelig billig metode til at måle hjertefunktionen ikke-invasivt. Ud fra følgende betragtninger transtorakal ekkokardiografi (TTE) billeder er begrænset til 2D parasternal kort- og akse synspunkter i grise 9, kan 3D-TEE anvendes til at opnå komplet 3-dimensionelle billeder af den venstre ventrikel. Derfor kræver det ikke matematiske tilnærmelser af venstre ventrikel (LV) mængder såsom den modificerede Simpsons regel 10. Sidstnævnte falder kort af corrrekte anslå LV mængder efter LV remodeling på grund af manglen på cylindriske geometri 11. Desuden 3D-TEE er foretrække over epikardial ekkokardiografi, da det ikke kræver kirurgiske indgreb, som er blevet observeret at udøve hjertebeskyttende effekter i den nuværende model 12. Selv om brugen af 2D-TEE til vurdering af myocardial funktion er blevet beskrevet før 13,14, begrænsninger med hensyn ventrikulær geometri svarer til dem observeret i 2D-TTE og afhænger af omfanget af LV remodeling. Derfor jo større infarkt (og således højere sandsynlighed for hjertesvigt), jo mere sandsynligt 2D-målinger bliver fejlbehæftet af ukorrekte geometriske antagelser og jo højere behovet for 3D teknikker.

Ikke desto mindre er de fleste billeddannende modaliteter begrænset i deres evne til at vurdere iboende funktionelle egenskaber af myocardium. PV loops give sådanne relevante yderligere oplysninger og erhvervelsen er derforbeskrevet detaljeret nedenfor.

Protocol

Alle dyreforsøg blev godkendt af Etisk Komité for Dyrs Eksperimenteren fra University Medical Center Utrecht (Utrecht, Holland) og i overensstemmelse med vejledningen for pasning og anvendelse af forsøgsdyr. BEMÆRK: Protokollen til at udføre en lukket bryst ballon okklusion er ikke en del af den nuværende manuskript og er beskrevet nærmere andetsteds 5. Kort sagt, svin – er (60 70 kg) underkastes 75 min transluminal ballon okklusion af midterdelen af ​​den venstre forre…

Representative Results

3D Transøsofagalt ekkokardiografi 3D transesofageal ekkokardiografi (3D-TEE) kan anvendes til vurdering af globale hjertefunktion. Efter AMI, global hjertefunktion afviger fra sunde basislinieværdier. Navnlig venstre ventrikel uddrivningsfraktion (LVEF) aftager fra 59 ± 4% til 37 ± 6% efter en uges reperfusion (n = 10) (GPJ van Hout, 2015). En stigning i slutsystolisk volumen (51 ± 7 til 82 ± 13 ml…

Discussion

Cardiac remodeling er i høj grad afhængig af myocardial infarktstørrelse og kvaliteten af myocardieinfarkt reparere 6,26. For at vurdere den førstnævnte på en standardiseret måde, den foreliggende manuskript tilvejebringer en elegant fremgangsmåde til in vivo infusion af Evans blue kombineret med ex vivo TTC-farvning, som er blevet valideret og ekstensivt anvendt 8,16,27,28. Denne metode giver mulighed for kvantificering af risikoområdet (AAR) og infarkt størrelse i forh…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Marlijn Jansen, Joyce Visser, Grace Croft, Martijn van Nieuwburg, Danny Elbersen and Evelyn Velema for their excellent technical support during the animal experiments.

Materials

3-dimensional transesophageal echocardiography
iE33 ultrasound device Philips
X7-2t transducer Philips
Aquasonic® 100 ultrasound transmission gel Parker Laboratories Inc. 01-34 Alternative product can be used
Battery handle type C (laryngoscope handle) Riester 12303
Ri-Standard Miller blade MIL 4 (laryngoscope blade) Riester 12225
Qlab 10.0 (3DQ Advanced) analysis software Philips
Name Company Catalog Number Comments
Pressure-volume loop acquisition
Cardiac defibrillator Philips
0.9% saline Braun
8F Percutaneous Sheath Introducer Set Arrow CP-08803 Alternative product can be used
9F Radifocus® Introducer II Standard Kit  Terumo RS*A90K10SQ Alternative product can be used
8F Fogarty catheter Edward Life Sciences 62080814F Alternative product can be used
7F Criticath™ SP5107H TD catheter (Swan-Ganz) Becton Dickinson (BD) 680078 Alternative product can be used
Ultraview SL Patient Monitor and Invasive Command Module (external cardiac output device) Spacelabs Healthcare 91387 Alternative product can be used
ADVantage system™ Transonic SciSense
7F tetra-polar admittance catheter (7.0 VSL Pigtail / no lumen) Transonic SciSense
Multi-channel acquisition system (Iworx 404) Iworx
Labscribe V2.0 analysis software Iworx Alternative product can be used
Name Company Catalog Number Comments
Infarct size / area-at-risk quantification
Diathermy Alternative product can be used
Lebsch knife Alternative product can be used
Hammer Alternative product can be used
Bone marrow wax Syneture Alternative product can be used
Klinkenberg scissors Alternative product can be used
Retractor Alternative product can be used
Surgical scissors
7F Percutaneous Sheath Introducer Set  Arrow CP-08703 Alternative product can be used
8F Percutaneous Sheath Introducer Set  Arrow CP-08803 Alternative product can be used
7F JL4 guiding catheter  Boston Scientific H749 34357-662 Alternative product can be used
8F JL4 guiding catheter  Boston Scientific H749 34358-662  Alternative product can be used
COPILOT Bleedback Control Valves  Abbott Vascular 1003331 Alternative product can be used
BD Connecta™  Franklin Lakes 394995 Alternative product can be used
Contrast agent Telebrix
Persuader 9 Steerable Guidewire 9 (0.014", 180 cm, straight tip), hydrophilic coating Medtronic Inc. 9PSDR180HS Alternative product can be used
SAPPHIRE™ Coronary Dilatation Catheter (PTCA balloon suitable for the size of the particular coronary artery (2.75 – 3.25 mm)) OrbusNeich 103-3015 Alternative product can be used
Evans Blue  Sigma-Aldrich E2129-100G Toxic. Alternative product can be used
2,3,5-triphenyl-tetrazolium chloride (TTC) Sigma-Aldrich T8877-100G Irritant. Alternative product can be used
9V battery
Ruler
Photocamera Sony
ImageJ National Institutes of Health Alternative product can be used

Referências

  1. Mosterd, A., Hoes, A. W. Clinical epidemiology of heart failure. Heart. 93 (9), 1137-1146 (2007).
  2. Nichols, M., et al. . European Cardiovascular Disease Statistics. , (2012).
  3. Krumholz, H. M., et al. Reduction in Acute Myocardial Infarction Mortality in the United States. JAMA. 302 (7), 767-773 (2010).
  4. Go, A. S., et al. Heart disease and stroke statistics – 2013 update: A Report from the American Heart Association. Circulation. 127 (1), (2013).
  5. Koudstaal, S., et al. Myocardial infarction and functional outcome assessment in pigs. J. Vis. Exp. (86), e51269 (2014).
  6. Chareonthaitawee, P., Christian, T. F., Hirose, K., Gibbons, R. J., Rumberger, J. A. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 25 (3), 567-573 (1995).
  7. Yellon, D. M., Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357 (11), 1221-1235 (2007).
  8. Suzuki, Y., Lyons, J. K., Yeung, A. C., Ikeno, F. In vivo porcine model of reperfused myocardial infarction: In situ double staining to measure precise infarct area/area at risk. Catheter Cardiovasc. Interv. 71 (1), 100-107 (2008).
  9. Weidemann, F., et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am. J. Physiol. Heart Circ. Physiol. 283 (2), H792-H799 (2002).
  10. Mercier, J. C., et al. Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation. 65 (5), 962-969 (1982).
  11. De Jong, R., et al. Cardiac Function in a Long-Term Follow-Up Study of Moderate and Severe Porcine Model of Chronic Myocardial Infarction. Biomed. Res. Int. 2015, 1-11 (2015).
  12. Van Hout, G. P. J., et al. Invasive surgery reduces infarct size and preserves cardiac function in a porcine model of myocardial infarction. J. Cell. Mol. Med. , 2655-2663 (2015).
  13. Meybohm, P., et al. Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 77 (2), 132-141 (2011).
  14. Gruenewald, M., et al. Visual evaluation of left ventricular performance predicts volume responsiveness early after resuscitation from cardiac arrest. Resuscitation. 82 (12), 1553-1557 (2011).
  15. Bolli, R., Becker, L., Gross, G., Mentzer, R., Balshaw, D., Lathrop, D. A. Myocardial protection at a crossroads: The need for translation into clinical therapy. Circ. Res. 95 (2), 125-134 (2004).
  16. Timmers, L., et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53 (6), 501-510 (2009).
  17. Csonka, C., et al. Measurement of myocardial infarct size in preclinical studies. J. Pharmacol. Toxicol. Methods. 61 (2), 163-170 (2010).
  18. Law, R., Katzka, D. A., Baron, T. H. Zenker’s Diverticulum. Clin. Gastroenterol. Hepatol. 12 (11), 1773-1782 (2014).
  19. Philips Healthcare. . QLAB 10.0 Quick Card: 3DQ and 3DQ Adv measurements guide. , (2013).
  20. Transonic. . ADV500 Pressure-Volume Measurement System Use and Care Manual, version 5. , (2006).
  21. Schramm, W. Is the cardiac output obtained from a Swan-Ganz catheter always zero?. J. Clin. Monit. Comput. 22 (6), 431-433 (2008).
  22. iWorx. . LabScribe 3: Software Manual for Pressure-Volume Analyses. , (2014).
  23. Hueper, W. C., Ichniowski, C. T. Toxicopathologic studies on the dye T-1824. Arch. Surg. 48 (1), 17-26 (1944).
  24. Van Hout, G. P. J., et al. Admittance-based pressure-volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiol. Rep. 2 (4), 1-9 (2014).
  25. Burkhoff, D., Mirsky, I., Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. Heart Circ. Physiol. 289 (2), H501-H512 (2005).
  26. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11 (5), 255-265 (2014).
  27. Fishbein, M., et al. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am. Heart. J. 101 (5), 593-600 (1981).
  28. Arslan, F., et al. Treatment with OPN-305, a humanized anti-toll-like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ. Cardiovasc. Interv. 5 (2), 279-287 (2012).
  29. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., Flameng, W. Left ventricular support by Catheter-Mountedaxial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41 (7), 1087-1095 (2003).
  30. Khalil, P. N., et al. Histochemical assessment of early myocardial infarction using 2,3,5-triphenyltetrazolium chloride in blood-perfused porcine hearts. J. Pharmacol. Toxicol. Methods. 54 (3), 307-312 (2006).
  31. Gardner, B. I., Bingham, S. E., Allen, M. R., Blatter, D. D., Anderson, J. L. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc. Ultrasound. 7, 38 (2009).
  32. Santos-Gallego, C., et al. 3D-Echocardiography Demonstrates Excellent Correlation With Cardiac Magnetic Resonance for Assessment of Left Ventricular Function and Volumes in a Model of Myocardial Infarction. J. Am. Coll. Cardiol. 59 (13), E1564 (2012).
  33. Keith Jones, ., W, , et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 120, S1-S9 (2009).
  34. Gross, G. J., Baker, J. E., Moore, J., Falck, J. R., Nithipatikom, K. Abdominal Surgical Incision Induces Remote Preconditioning of Trauma (RPCT) via Activation of Bradykinin Receptors (BK2R) and the Cytochrome P450 Epoxygenase Pathway in Canine Hearts. Cardiovasc. Drugs Ther. 25 (6), 517-522 (2011).
  35. Van Hout, G. P. J., de Jong, R., Vrijenhoek, J. E. P., Timmers, L., Duckers, H. J., Hoefer, I. E. Admittance-based pressure-volume loop measurements in a porcine model of chronic myocardial infarction. Exp. Physiol. 98 (11), 1565-1575 (2013).
  36. Sunagawa, K., Maughan, W. L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 245 (5 Pt 1), H773-H780 (1983).
  37. Steendijk, P., Baan, J., Der Velde, E. T. V. a. n., Baan, J. Effects of critical coronary stenosis on global systolic left ventricular function quantified by pressure-volume relations during dobutamine stress in the canine heart. J. Am. Coll. Cardiol. 32 (3), 816-826 (1998).
check_url/pt/54021?article_type=t

Play Video

Citar este artigo
Ellenbroek, G. H., van Hout, G. P., Timmers, L., Doevendans, P. A., Pasterkamp, G., Hoefer, I. E. Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction. J. Vis. Exp. (116), e54021, doi:10.3791/54021 (2016).

View Video