Summary

Ciblées ARN Séquençage Assay pour caractériser l'expression génique et génomique Transformations

Published: August 04, 2016
doi:

Summary

We describe a targeted RNA sequencing-based method that includes preparation of indexed cDNA libraries, hybridization and capture with custom probes and data analysis to interrogate selected transcripts for gene expression, mutations, and gene fusions. Targeted RNAseq permits cost-effective, rapid evaluation of selected transcripts on a desktop sequencer.

Abstract

séquençage de l'ARN (RNA-seq) est une méthode polyvalente qui peut être utilisée pour détecter et caractériser l'expression des gènes, des mutations, des fusions de gènes, et ARNs non codants. Norme exige RNA-seq 30-100000000 séquençage lit et peut inclure plusieurs produits d'ARN tels que l'ARNm et ARN non codantes. Nous démontrons comment ciblée RNA-seq (capture) permet une étude ciblée sur les produits d'ARN sélectionnés à l'aide d'un séquenceur de bureau. RNA-seq capture peut caractériser les transcriptions annotées, faibles, ou exprimés de façon transitoire qui pourraient autrement être manquées en utilisant des méthodes traditionnelles RNA-seq. Nous décrivons ici l'extraction d'ARN à partir de lignées cellulaires, l'ARN ribosomique, l'épuisement de la synthèse d'ADNc, la préparation de bibliothèques de codes à barres, l'hybridation et la capture des produits de transcription cibles, et le séquençage multiplex sur un séquenceur de bureau. Nous présentons également le pipeline d'analyse informatique, qui comprend l'évaluation du contrôle de la qualité, l'alignement, la détection de la fusion, l'expression du gène de quantification et d'identification de simple nucdes variants de leotide. Ce dosage permet un séquençage de transcription ciblé pour caractériser l'expression des gènes, des fusions de gènes et des mutations.

Introduction

Whole transcriptome or RNA sequencing (RNAseq) is an unbiased sequencing method to assess all RNA products. The goal of targeted RNAseq (Capture) is a focused evaluation of selected transcripts with increased sensitivity, dynamic range, reduced cost or scale, and increased throughput compared to standard RNAseq. Similar to standard RNAseq, targeted enrichment approaches can be used to evaluate gene expression, multiple RNA species such as mRNA, microRNA (miRNA), lncRNA1, other noncoding RNAs2, gene fusions3, and mutations4-6.

Capture involves hybridization of complementary oligonucleotides to enrich cDNA libraries for sequencing. The rationale for RNAseq Capture is similar to microarray approaches where complementary oligonucleotides or probes are hybridized to samples and then measured for relative abundance. For microarray technologies, expression is based on relative signal measured for transcripts binding to these probes. Microarrays are thus limited by range, potential background noise from non-specific binding, and cross-hybridization of probes. Furthermore, arrays have limited dynamic range for low and highly expressed transcripts compared to RNAseq1. Microarrays are widely utilized due to their reduced cost and high throughput capacity compared to RNAseq.

Here, we demonstrate a method for RNAseq Capture that offers a middle ground between RNAseq and microarray approaches for evaluating the transcriptome. RNAseq Capture has intermediate throughput, greater dynamic range and sensitivity, and is scaled for fast turnaround on desktop sequencers. RNAseq Capture also requires reduced computational resources in terms of storage space and data processing.

Protocol

Remarque: Ce protocole décrit le traitement et l'analyse des quatre échantillons simultanés. Cette méthode est compatible avec l'ARN isolé à partir de cellules, tissus frais congelé et de tissus en paraffine fixés au formol (FFPE). Ce protocole commence avec 50 – 1000 ng (250 ng recommandé) à partir de l'entrée d'ARN pour chaque échantillon. 1. ARNr Épuisement et Fragmentation de procédure ARN ARNr Depletion Retirer éluer, p…

Representative Results

A soulignant schématique des étapes clés dans RNA-seq capture est représenté sur la figure 1. Quatre lignes de cellules cancéreuses avec des mutations connues ont été utilisés pour démontrer l'efficacité de la technique RNA-seq Capture (K562 avec ABL1 fusion, LC2 avec RET fusion, EOL1 avec PDGFRalpha fusion et RT- 4 avec FGFR3 fusion). Les quatre échantillons ont été regroupés et séquencés avec 2x 100 pb lit sur un…

Discussion

RNA-seq Capture est une stratégie intermédiaire entre RNA-seq et microarray approches pour l'évaluation d'une partie sélectionnée du transcriptome. Les avantages de la capture comprennent le coût, le délai d'exécution rapide réduits sur un séquenceur de bureau, à haut débit, et la détection des altérations génomiques. Le procédé peut être adapté pour caractériser ARN non-codants 23, détecter seul nucléotide variantes 4-6, examiner épissage de l' ARN, et d'…

Declarações

The authors have nothing to disclose.

Acknowledgements

We give special thanks to Ezra Lyon, Eliot Zhu, Michele Wing, Esko Kautto and Eric Samorodnitsky for technical support. We would also like to thank Jenny Badillo for her administrative support for our team. We acknowledge the Ohio Supercomputer Center (OSC) for providing disk space, processing capacity, and support to run our analyses. We thank the Comprehensive Cancer Center (CCC) at The Ohio State University Wexner Medical Center for their administrative support of this work. S.R. and Team are supported by the American Cancer Society (MRSG-12-194-01-TBG), a Prostate Cancer Foundation Young Investigator Award, NHGRI (UM1HG006508-01A1), Fore Cancer Research Foundation, American Lung Association, and Pelotonia.

Materials

Thermomixer R Eppendorf 21516-166
Centrifuge 5417R Eppendorf 5417R
miRNeasy Mini Kit Qiagen 217004
Molecular Biology Grade Ethanol Sigma Aldrich E7023-6X500ML
Thermoblock 24 X 1.5ml Eppendorf 21516-166
MiSeq Reagent Kit v2 (300-cycles) Illumina MS-102-2002
MiSeq Desktop Sequencer Illumina
PhiX Control v3 Illumina FC-110-3001
TruSeq Stranded Total RNA Kit with RiboZero Gold SetA Illumina RS-122-2301
25 rxn xGen® Universal Blocking Oligo – TS-p5 IDT 127040822
25 rxn xGen® Universal Blocking Oligo – TS-p7(6nt) IDT 127040823
25 rxn xGen® Universal Blocking Oligo – TS-p7(8nt) IDT 127040824
Agencourt® AMPure® XP – PCR Purification beads  Beckman-Coulter A63880
Dynabeads® M-270 Streptavidin Life Technologies 65305
COT Human DNA, Fluorometric Grade, 1mg Roche Applied Science 05480647001
Qubit® Assay Tubes  Life Technologies Q32856
Qubit® dsDNA HS Assay Kit Life Technologies Q32851
SeqCap® EZ Hybridization and Wash Kits  (24 or 96 reactions) Roche NimbleGen  05634261001 or 05634253001 
Qubit® 2.0 Fluorometer  Life Technologies Q32866
10 x 2 ml IDTE pH 8.0 (1X TE Solution) IDT
Tween20 BioXtra Sigma P7949-500ML
Nuclease Free Water Life Technologies AM9937
C1000 Touch™ Thermal Cycler with 96–Well Fast Rection Module Biorad 185-1196
SeqCap EZ Hybridization and Wash Kits Roche Applied Science 05634253001
SuperScript II Reverse Transcription 200U/ul Life Technologies 18064-014
D1000 ScreenTape Agilent Technol. Inc. 5067-5582
Agencourt RNAClean XP -40ml Beckman Coulter Inc A63987
RNA ScreenTape Agilent Technol. Inc. 5067-5576
RNA ScreenTape Ladder Agilent Technol. Inc. 5067-5578
RNA ScreenTape Sample Buffer Agilent Technol. Inc. 5067-5577
Sodium Hydroxide Sigma 72068-100ML
DynaBeads MyOne Streptavidin T1 Life Technologies 65602
DYNAMAG -96 SIDE EACH Life Technologies 12331D
Chloroform Sigma C2432-1L
KAPA HotStart ReadyMix KAPA Biosystems KK2602
NanoDrop 2000 Spectrophotometer Thermo Scientific
My Block Mini Dry Bath Benchmark BSH200
D1000 Reagents Agilent Technol. Inc. 5067- 5583
Vacufuge Plus Eppendorf 022829861 

Referências

  1. Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10, 57-63 (2009).
  2. Mercer, T. R., et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protoc. 9, 989-1009 (2014).
  3. Maher, C. A., et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A. 106, 12353-12358 (2009).
  4. Piskol, R., Ramaswami, G., Li, J. B. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet. 93, 641-651 (2013).
  5. Quinn, E. M., et al. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS One. 8, e58815 (2013).
  6. Tang, X., et al. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data. Nucleic Acids Res. 42, e172 (2014).
  7. . Preparing Libraries for Sequencing on the MiSeq® Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/preparing-libraries-for-sequencing-on-miseq-15039740-d.pdf (2013)
  8. . MiSeq® Reagent Kit v2 Reagen Preparation Guide Available from: https://support.illumina.com/downloads/miseq_reagent_kit_reagent_preparation_guide.html (2012)
  9. Kim, D., et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
  10. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078-2079 (2009).
  11. DeLuca, D. S., et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 28, 1530-1532 (2012).
  12. Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21 (2013).
  13. Van der Auwera, G. A., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 11, 11.10.1-11.10.33 (2013).
  14. Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28, 511-515 (2010).
  15. Iyer, M. K., Chinnaiyan, A. M., Maher, C. A. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics. 27, 2903-2904 (2011).
  16. Kim, D., Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).
  17. Fernandez-Cuesta, L., et al. Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol. 16, 7 (2015).
  18. Shugay, M., Ortiz de Mendibil, ., Vizmanos, I., L, J., Novo, F. J. Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions. Bioinformatics. 29, 2539-2546 (2013).
  19. Clark, M. B., et al. Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nat Methods. 12, 339-342 (2015).
  20. Cieslik, M., et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. , (2015).
  21. Cabanski, C. R., et al. cDNA hybrid capture improves transcriptome analysis on low-input and archived samples. J Mol Diagn. 16, 440-451 (2014).
  22. Costa, C., Gimenez-Capitan, A., Karachaliou, N., Rosell, R. Comprehensive molecular screening: from the RT-PCR to the RNA-seq. Transl Lung Cancer Res. 2, 87-91 (2013).
  23. Zhao, W., et al. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 15, 419 (2014).

Play Video

Citar este artigo
Martin, D. P., Miya, J., Reeser, J. W., Roychowdhury, S. Targeted RNA Sequencing Assay to Characterize Gene Expression and Genomic Alterations. J. Vis. Exp. (114), e54090, doi:10.3791/54090 (2016).

View Video