Summary

Levering af terapeutisk siRNA til CNS Brug kationiske og anioniske liposomer

Published: July 23, 2016
doi:

Summary

The goal of this protocol is to use cationic/anionic liposomes with a neuro-targeting peptide as a CNS delivery system to enable siRNA to cross the BBB. The optimization of a delivery system for treatments, like siRNA, would allow for more treatment options for prion and other neurodegenerative diseases.

Abstract

Prion diseases result from the misfolding of the normal, cellular prion protein (PrPC) to an abnormal protease resistant isomer called PrPRes. The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrPRes isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrPRes formation in brain tissue, do not specifically target neuronal PrPC, and are often too toxic to use in animal or human subjects.

We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrPC is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to AchR-expressing neurons, and decreased the PrPC expression of neurons in the CNS.

Introduction

Prioner er alvorlige neurodegenerative sygdomme, der påvirker CNS. Prionsygdomme følge af fejlfoldning af den normale cellulære prionprotein, PrP C, af et infektiøst isomer kaldet PrP Res. Disse sygdomme rammer en bred vifte af arter, herunder bovin spongiform encephalopati i køer, scrapie, chronic wasting disease hos hjortedyr, og Creutzfeldt-Jakobs sygdom hos mennesker 1-3. Prioner forårsage neurodegeneration, der starter med synaptisk tab, og udvikler sig til vakuolisering, gliose, neuronal tab, og plaque indskud. Til sidst, hvilket resulterer i død af dyret / individuelle 4. I årtier har forskere undersøgt forbindelser beregnet til at bremse eller stoppe progressionen af ​​prion sygdom. Men forskere har ikke fundet enten en vellykket terapi eller en effektiv systemisk levering køretøj.

Endogen PrP C-ekspression er nødvendig for udviklingen af prionsygdomme 5 </sop>. Derfor kan faldende eller eliminere PrP ° ekspression medføre en forsinkelse eller lindring af sygdom. Flere grupper skabt transgene mus med reducerede niveauer af PrP ° eller injicerede lentivectors udtrykker shRNA direkte i murine hjernevæv for at undersøge den rolle, som PrP C ekspressionsniveauer i prionsygdom. Disse forskere fundet at reducere mængden af neuronal PrP C resulterede i at standse den gradvise neuropatologi af prionsygdomme og forlænget dyrenes liv 6-9. Vi har rapporteret, at PrP C siRNA behandlingsresultater i clearance af PrP Res i mus neuroblastomceller 10. Disse undersøgelser antyder, at anvendelse af terapier for at formindske PrP C ekspressionsniveauer, ligesom små interfererende RNA (siRNA), som spalter mRNA, kan tilstrækkeligt forsinke progressionen af prionsygdomme. Imidlertid blev de fleste terapier undersøgt for prionsygdomme leveret på måder, som ikke ville være praktiski et klinisk miljø. Derfor er en siRNA terapi behov for et systemisk leveringssystem, som leveres intravenøst ​​og målrettet til CNS.

Forskere har undersøgt anvendelsen af ​​liposomer som leveringsvehikler til genterapi produkter. Kationiske og anioniske lipider begge anvendes i dannelsen af ​​liposomer. Kationiske lipider er mere udbredt end anioniske lipider fordi ladningen forskellen mellem det kationiske lipid og DNA / RNA muliggør effektiv emballage. En anden fordel ved kationiske lipider er, at de krydser cellemembranen lettere end andre lipider 11-14. Men kationiske lipider er mere immunogene end anioniske lipider 13,14. Derfor har forskere begyndt at skifte fra at bruge kationiske til anioniske lipider i liposomer. Genterapiprodukter effektivt kan pakkes i anioniske liposomer under anvendelse af positivt ladede peptid protaminsulfat, som kondenserer DNA / RNA-molekyler 15-19. Da anioniske Lipids er mindre immunogene end kationiske lipider, de kan have øget cirkulation gange, og kan være mere tolereres i dyremodeller 13,14. Liposomer er målrettet til specifikke væv ved hjælp af målrettet peptider, der er knyttet til liposomerne. RVG-9r neuropeptid, som binder til nicotinacetylcholinreceptorer, er blevet anvendt til at målrette siRNA og liposomer til CNS 17-20.

Denne rapport skitserer en protokol til at producere tre siRNA levering køretøjer, og til at pakke og levere siRNA til neuronale celler (Figur 1). Liposom-siRNA-peptidkomplekser (LSPCs) er sammensat af liposomer med siRNA og RVG-9r målrettende peptid elektrostatisk bundet til den ydre overflade af liposomet. Peptid rettet liposomindkapslet terapeutiske siRNA (PALETS) er sammensat af siRNA og protamin indkapslet i liposomet, med RVG-9r kovalent bundet til lipid PEG-grupper. Brug nedenstående metoder til at generere LSPCs og PALETS, PrP ° siRNA falder PrP ° ekspression op til 90% i neuronale celler, der besidder et fantastisk løfte at helbrede eller i det væsentlige sinke udviklingen af prionsygdom patologi.

Protocol

Alle mus blev avlet og holdt på Lab Animal Resources, akkrediteret af Association for Vurdering og akkreditering af Lab Animal Care International, i overensstemmelse med protokoller, der er godkendt af Institutional Animal Care og brug Udvalg på Colorado State University. 1. Udarbejdelse af LSPCs Brug en 1: 1 DOTAP (1,2-dioleoyl-3-trimethylammonium-propan): cholesterol ratio for LSPCs. For en 4 nmol liposompræparat, bland 2 nmol DOTAP og 2 nmol af kolesterol i 10 ml af en 1: 1 …

Representative Results

For at øge effektiviteten af ​​siRNA indkapsling inden anioniske PALETS blev siRNA blandet med protamin. At bestemme den bedste protaminkoncentration for siRNA blev siRNA blandet med forskellige koncentrationer af protamin, fra 1: 1 til 2: 1 (figur 3A). Der var en 60-65% siRNA indkapslingseffektivitet i anioniske liposomer uden anvendelse af protamin. Prøver med protamin: siRNA molære forhold fra 1: 1 til 1,5: 1 (133-266 nM) havde 80-90% siRNA indkapsling. Molære…

Discussion

Denne rapport beskriver en protokol til at oprette to målrettede doseringssystemer, der effektivt transporterer siRNA til CNS. Tidligere metoder til at levere siRNA til CNS inkluderet injicere siRNA / shRNA vektorer direkte ind i hjernen, intravenøs injektion af målrettet siRNA eller intravenøs injektion af ikke-målrettede liposom-siRNA komplekser. Injektion af siRNA / shRNA vektorer i CNS forårsager et fald i målprotein ekspressionsniveauer. Men den siRNA / shRNA ikke diffundere frit gennem CNS. Desuden er disse…

Declarações

The authors have nothing to disclose.

Acknowledgements

We would like to acknowledge the following funding sources: the CSU Infectious Disease Translational Research Training Program (ID:TRTP) and the NIH research grant program (R01 NS075214-01A1). We would like to thank the Telling lab for the use of their monoclonal antibody PRC5. We would also like to thank the Dow lab for DOTAP liposomes, and for sharing their expertise in generating liposomes.

Materials

DOTAP lipid Avanti Lipids 890890
Cholesterol Avanti Lipids 700000
DSPE Avanti Lipids 850715
DSPE-PEG Avanti Lipids 880125
Chloroform Fisher Scientific AC268320010
Methanol EMD Millipore 113351
N2 Gas AirGas
Sucrose Fisher Scientific S5-500
Extruder Avanti Lipids 610023
1.0, 0.4, and 0.2um filters Avanti Lipids 610010, 610007, 610006
PBS Life Technologies 70011-044
Protamine sulfate Fisher Scientific ICN10275205
EDC Thermo Scientific 22980 Aliquoted for single use
Sulfo-NHS Thermo Scientific 24510 Aliquoted for single use
40um Cell Strainer Fisher Scientific 08-771-1
Rat anti-mouse CD16/CD32 Fc block BD Pharmigen 553141
Anti-PrP antibody (PRC5) Proprietary – PRC

Referências

  1. Bolton, D. C., Mckinley, M. P., Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science. 218 (4579), 1309-1311 (1982).
  2. McKinley, M. P., Bolton, D. C., Pruisner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell. 35 (1), 57-62 (1983).
  3. Pruisner, S. B. Novel proteinaceous infectious particles cause scrapie. Science. 216 (4542), 136-144 (1982).
  4. Jeffrey, M., McGovern, G., Sisò, S., González, L. Cellular and sub-cellular pathology of prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathologica. 121 (1), 113-134 (2011).
  5. Büeler, H., et al. Mice devoid of PrP are resistant to scrapie. Cell. 73 (7), 1339-1347 (1993).
  6. Pfeifer, A., et al. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest. 116 (12), 3204-3210 (2006).
  7. White, M., Farmer, M., Mirabile, I., Brandner, S., Collinge, J., Mallucci, G. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice. Proc Natl Acad Sci. 105 (29), 10238-10243 (2008).
  8. Gallozzi, M., et al. Prnp knockdown in transgenic mice using RNA interference. Transgenic Research. 17 (5), 783-791 (2008).
  9. Mallucci, G., et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron. 53 (3), 325-335 (2007).
  10. Pulford, B., et al. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrPC on neuronal cells PrPRes in infected cultures. PLoS One. 5 (6), (2010).
  11. Malone, R. W., Felgner, P. L., Verma, I. M. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci. 86, 6077-6081 (1989).
  12. Liu, Y., et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol. 15, 167-173 (1997).
  13. Freimark, B. D., et al. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol. 160 (9), 4580-4586 (1998).
  14. Balzas, D. A., Godbey, W. T. Liposomes for use in gene delivery. J Drug Deliv. , (2011).
  15. Srinivasan, C., Burgess, D. J. Optimization and characterization of anionic lipoplexes for gene delivery. J Control Release. 136 (1), 62-70 (2009).
  16. Lakkaruju, A., Dubinsky, J. M., Low, W. C., Rahman, Y. Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem. 276 (34), 32000-32007 (2001).
  17. Tao, Y., Han, J., Dou, H. Brain-targeting gene delivery using a rabies virus glycoprotein peptide modulated hollow liposomes: bio-behavioral study. J Mater Chem. 22, 11808-11815 (2012).
  18. Li, S., Huang, L. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4 (9), 891-900 (1997).
  19. Li, S., Rizzo, M. A., Bhattacharya, S., Huang, L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5 (7), 930-937 (1998).
  20. Kumar, P., et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448, 39-43 (2007).
  21. Voinea, M., Simionescu, M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J Cell Mol Med. 6 (4), 465-474 (2002).
  22. Lakkaraju, A., et al. Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J. Biol. Chem. 276 (34), 32000-32007 (2001).
  23. Li, S., Huang, L. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4 (9), 891-900 (1997).
  24. Büeler, H., et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 356 (6370), 577-582 (1992).
  25. Dykxhoorn, D., Novina, C., Sharp, P. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Bio. 4 (6), 457-467 (2003).
  26. Graham, A., Ray, M., Perry, E., Jaros, E. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat. 25 (2), 97-113 (2003).
  27. Kretzschmar, H. A., Prusiner, S. B., Stowring, L. E. Scrapie prion proteins are synthesized in neurons. Am J Pathol. 122 (1), 1-5 (1986).
  28. Moser, M., Colello, R., Pott, U., Oesch, B. Developmental expression of the prion protein gene in glial cells. Neuron. 14 (3), 509-517 (1995).
  29. Cronier, S., Laude, H., Peyrin, J. M. Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci. 101 (33), 12271-12276 (2004).
  30. Diedrich, J., Bendheim, P., Kim, Y. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Natl Acad Sci. 88 (2), 375-379 (1991).
check_url/pt/54106?article_type=t

Play Video

Citar este artigo
Bender, H. R., Kane, S., Zabel, M. D. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes. J. Vis. Exp. (113), e54106, doi:10.3791/54106 (2016).

View Video