Summary

Un protocolo para la producción de nanopartículas gliadina-cianoacrilato para el recubrimiento hidrofílico

Published: July 08, 2016
doi:

Summary

This article presents a protocol for the production of protein-based nanoparticles that changes the hydrophobic surface to hydrophilic. The produced nanoparticle is an assembly of gliadin-cyanoacrylate diblock copolymers. Spray coating with the produced nanoparticle changes the surface of target material to a hydrophilic surface.

Abstract

Este artículo presenta un protocolo para la producción de nanopartículas a base de proteínas que cambia la superficie hidrófoba a hidrófila mediante un simple revestimiento por pulverización. Estas nanopartículas son producidas por la reacción de polimerización de cianoacrilato de alquilo en la superficie de moléculas (gliadina) de proteínas de cereales. Alquil cianoacrilato es un monómero que se polimeriza al instante a TA cuando se aplica a la superficie de los materiales. Su reacción de polimerización se inicia por las trazas de especies débilmente básicos o nucleófilos en la superficie, incluyendo la humedad. Una vez polimerizado, los cianoacrilatos de alquilo polimerizados muestran una fuerte afinidad con los materiales objeto porque grupos nitrilo se encuentran en la cadena principal de poli (cianoacrilato de alquilo). Las proteínas también funcionan como iniciador para esta polimerización, ya que contienen grupos amina que pueden iniciar la polimerización de cianoacrilato. Si la proteína agregada se utiliza como un iniciador, agregado proteico está rodeado por el hidrófobopoli (cianoacrilato de alquilo) cadenas después de la reacción de polimerización de cianoacrilato de alquilo. Mediante el control de la condición experimental, se producen partículas en el rango nanométrico. Las nanopartículas producidas adsorben fácilmente a la superficie de la mayoría de materiales incluyendo vidrio, metales, plásticos, madera, cuero, y telas. Cuando la superficie de un material se pulveriza con la suspensión de nanopartículas producida y se enjuagó con agua, la estructura micelar de nanopartículas cambia su conformación, y las proteínas hidrófilas están expuestos al aire. Como resultado, la superficie recubierta con nanopartículas cambia a hidrófilo.

Introduction

The goal of this article is to show the protocol for the preparation of nanoparticle suspension that modifies the wetting property of materials by a simple spray. The presented nanoparticle suspension is made from alkyl cyanoacrylate1 and a cereal protein, gliadin2,3. During the manufacturing process, protein aggregates are formed in aqueous ethanol4. Subsequent reaction with monomer (alkyl cyanoacrylate) produces the nanoparticle that is comprised of a protein core surrounded by linear polymer chains [poly(alkyl cyanoacrylate)]5.

Poly(alkyl cyanoacrylate)s are biodegradable and have been used for the production of nanoparticles via emulsion polymerization6. This reaction is spontaneously initiated by the hydroxyl groups dissociated from water or by other nucleophilic groups in the reaction medium7. In the case of the reaction presented in this article, the amine groups on the surface of protein aggregates initiate the polymerization reaction of alkyl cyanoacrylate monomers5,8. As a result of this reaction, nanoparticles are formed in the reaction medium. The core of the nanoparticle is protein aggregates and the outer layer is poly(alkyl cyanoacrylate) (PACA) chains. The prepared nanoparticle has a strong affinity on most materials (more precisely, any material which PACA can adsorb to) and adheres onto their surface to form a thin coating on a nanometer scale. A simple spray coating instantly turns the surface of the materials hydrophilic.

Gliadin is one of the main fractions of gluten, which is in the endosperms of wheat. Gliadins are mainly monomeric proteins with molecular weights around 28,000 – 55,000. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are responsible for the aggregation of gliadins2. Although gliadin is chosen as a reactant in this article, many other proteins can also be used for the same purpose. However, the reaction condition needs to be modified accordingly because the condition for inducing aggregation is dependent on the type of protein to be employed8. Compared with other proteins, gliadin is more readily available, purification is simple, and production cost is low. Although ethyl cyanoacrylate (ECA) is chosen as a monomer for the presented reaction, other alkyl cyanoacrylates can also be used for the same reaction. The reason for choosing ECA is that it is readily available at low cost.

Protocol

1. Desengrasante gliadina Comercial Medir 150 ml de acetona con un cilindro graduado y se vierte en 250 ml matraz Erlenmeyer. Mientras se agita con una barra magnética en un agitador magnético a temperatura ambiente, añadir 30 g de polvo de gliadina comercial. Sellar la abertura del matraz con papel de aluminio, y mantener en agitación O / N en la campana. Filtrado de la solución con un papel de filtro. Se lava el filtrado con acetona fresca (ca. 50 ml). Dejar reposa…

Representative Results

Las nanopartículas se pueden preparar en diversas condiciones de reacción. Formas de gliadina se agregan en una amplia gama de contenido de etanol 5. Sin embargo, el tamaño de los agregados debe ser lo más pequeño posible, ya que una capa adicional (es decir., La CEPA polimerizado) se añadirá a este agregado y este proceso hará que el tamaño final más grande. Si el tamaño final de partícula es demasiado grande, la partícula será inestable y fácilmente s…

Discussion

There are several critical steps in the production of the nanoparticle suspension. If the purified gliadin contains impurities, the reaction with ECA will produce side products. Although these unwanted products can be removed from the reaction medium during the centrifugation stage, it lowers the yield of the major product. If the gliadin solution prepared during experimental step 2.3) does not show clear separation between supernatant and precipitate after two days, the solution needs to stand for longer time. Using fre…

Declarações

The authors have nothing to disclose.

Acknowledgements

Gracias al Sr. Jason Adkins para la asistencia técnica de expertos.

Materials

Ethyl cyanoacrylate (ECA) monomer K&R International (Laguna Niguel, CA) I-1605 Any pure ECA can be used.
Gliadin MGP Ingredients, Inc (Atchison, KS) Gift from the company Gliadin can be purchased from Sigma-Aldrich (cat #: G3375-25G). Instead of gliadin, any commercial  gluten can be used.
HCl Any Any reagent grade chemical can be used.
Acetone Any Any reagent grade chemical can be used.
Methanol Any Any reagent grade chemical can be used.
Ethanol (100%) Any Any reagent grade chemical can be used.
Filter paper Any Any grade filter paper larger than 10 cm can be used.
Cell culture square dish Any Any dish larger than 20 cm x 20 cm can be used.
Coffee grinder Any Any coffee grinder can be used.
Rotary evaporator Any Any rotary evaporator can be used.
Freeze Dryer Any Any freeze dryer that can reach – 70°C can be used.
Centrifuge Any Any centrifuge that can apply 1000 x g can be used.
Magnetic stirrer Any Any magnetic stirrer that can turn spin bar to 1000 RPM can be used.
Dynamic Light Scattering (DLS) Brookhaven Instruments Corporation NanoBrook Omni Zeta Potential Analyzer DLS from any company can be used.
Scanning Electron Microscope (SEM) Carl Zeiss Inc. Any SEM can be used.
Dynamic Contact Angle (DCA) Thermo Cahn Instruments Any DCA can be used.

Referências

  1. Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliver. Rev. 55, 519-548 (2003).
  2. Wieser, H. Chemistry of gluten proteins. Food Microbiol. 24, 115-119 (2007).
  3. Bietz, J. A., Wall, J. S. Identity of high molecular weight gliadin and ethanol soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem. 57, 415-421 (1980).
  4. Kim, S. Production of composites by using gliadin as a bonding material. J. Cereal Sci. 54, 168-172 (2011).
  5. Kim, S., Kim, Y. Production of gliadin-poly(ethyl cyanoacrylate) nanoparticles for hydrophilic coating. J. Nanopart. Res. 16, 1-10 (2014).
  6. Behan, N., Birkinshaw, C., Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials. 22, 1335-1344 (2001).
  7. Nicolas, J., Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 111-127 (2009).
  8. Kim, S., Evans, K., Biswas, A. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property. Colloid Surface. B. 107, 68-75 (2013).
  9. Lander, L. M., Siewierski, L. M., Brittain, W. J., Vogler, E. A. A systematic comparison of contact angle methods. Langmuir. 9, 2237-2239 (1993).
  10. Davies, J., Nunnerley, C. S., Brisley, A. C., Edwards, J. C., Finlayson, S. D. Use of Dynamic Contact Angle Profile Analysis in Studying the Kinetics of Protein Removal from Steel Glass, Polytetrafluoroethylene, Polypropylene, Ethylenepropylene Rubber, and Silicone Surfaces. J. Colloid Interf. Sci. 182, 437-443 (1996).
  11. Giolando, D. M. Nano-crystals of titanium dioxide in aluminum oxide: A transparent self-cleaning coating applicable to solar energy. Sol. Energy. 97, 195-199 (2013).
check_url/pt/54147?article_type=t

Play Video

Citar este artigo
Kim, S. A Protocol for the Production of Gliadin-cyanoacrylate Nanoparticles for Hydrophilic Coating. J. Vis. Exp. (113), e54147, doi:10.3791/54147 (2016).

View Video