Summary

Observation og Kvantificering af telomer og repetitive sekvenser Brug Fluorescens<em> In Situ</em> Hybridisering (FISH) med PNA-prober i<em> Caenorhabditis elegans</em

Published: August 04, 2016
doi:

Summary

We report a concise procedure of fluorescence in situ hybridization (FISH) in the gonad and embryos of Caenorhabditis elegans for observing and quantifying repetitive sequences. We successfully observed and quantified two different repetitive sequences, telomere repeats and template of alternative lengthening of telomeres (TALT).

Abstract

Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)1. Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT2. Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length. On the contrary, fluorescence in situ hybridization (FISH) can provide the information of the individual telomeres in cells. Here, we provide protocols and representative results of the method to determine telomere length of C. elegans by fluorescent in situ hybridization. This method provides a simple, but powerful, in situ procedure that does not cause noticeable damage to morphology. By using fluorescently labeled peptide nucleic acid (PNA) and digoxigenin-dUTP-labeled probe, we were able to visualize two different repetitive sequences: telomere repeats and template of ALT (TALT) in C. elegans embryos and gonads.

Introduction

Telomer beskytter kromosomale ender fra afvigende fusion og nedbrydning. Mammal telomer består af G-rige hexamere gentagelser, TTAGGG og shelterin komplekser. Den telomer gentagelsessekvens af nematoden ligner dem af pattedyr (TTAGGC). De fleste eukaryoter udnytte telomerase at tilføje telomer gentagelser til deres kromosomale ender. Men, 10 – 15% af kræftceller udnytte telomerase uafhængig mekanisme, kendt som Alternativ Forlængelse af Telomerer (ALT) 3. Tidligere vi rapporterede, at telomer gentagelser og dens tilhørende sekvenser, navngivet som Tält, blev opformeret i telomerer af telomerase mutant linjer, der overlevede kritisk sterilitet 2.

Telomerlængde blev målt ved kvantitativ PCR eller ved Southern blot, som tilvejebringer gennemsnitlige længde af de samlede telomerer 4,5,6,7. Læs optælling af telomer repeat i hele genomet sekventering data er også en indikator af de samlede telomer indhold 8. selvom SinGLE telomerlængde Analysis (STELA) kunne give længden af en enkelt telomer, kan det ikke give geografisk information af telomerer 9. Mens POT-1 :: mCherry reporter protein giver den geografisk information af telomerer in vivo, kan det ikke repræsentere længder af dobbelt-strenget telomerer, som POT-1 er en enkelt-strenget telomer bindende protein 10.

Mens ovennævnte fremgangsmåder giver det gennemsnitlige information af repetitive sekvenser, fluorescens in situ hybridisering (FISH) gør det muligt at observere mængden og rumlige mønster af individuelle sekvenser af interesse på en kromosomal skala. I stedet for rensning af DNA, er væv eller celler fikseret for at bevare den indfødte geografisk information i FISH. , FISH er således en både kvantitativ og kvalitativ redskab til observation af individuelle repeat sekvenser, såsom telomer gentagelser.

Denne protokol giver en effektiv fremgangsmåde til samtidig detektion af både teloblotte og andre gentagelser baseret på forbedringer fra tidligere beskrevne metoder 11,12. C. elegans larver eller voksne er flercellede organisme med højt differentierede celler. Heterogenitet celler hæmmer på kvantitativ analyse af et stort antal telomer pletter. For at maksimere antallet af analyserede celler, embryoer er isoleret og spredt på polylysin-belagte dias for FISH. Derudover kan denne protokol også kombineres med immunofluorescens.

Som bevis for, at protokollen fungerer, viser vi, at det er muligt at observere og kvantificere to forskellige repetitive sekvenser. DNA-probe mod TALT1 blev genereret med enkle PCR indarbejde digoxigenin-dUTP. Så denne TALT1 probe og fluorescensmærket telomer PNA probe blev hybridiseret samtidigt. Efterfølgende digoxigenin blev påvist ved kanoniske immunofluorescens metoder. Vi præsenterer her de repræsentative billeder, hvor TALT1 colocalized med telomer i TRT-1 </em> overlevende.

Protocol

1. mærkning af prober med digoxigenin-dUTP ved PCR Udfør PCR mærkning med 10x dNTP-blanding indeholdende digoxigenin-dUTP som tidligere beskrevet 13. Oprense PCR-produkt med spin-kolonne oprensning ifølge producentens anvisninger. Hvis sonden er kortere end 200 bp, fjerne frit digoxigenin-dUTP med spin-søjlechromatografi fra reaktionsblandingen i stedet for spin-kolonne oprensning. 2. Forberedelse Polylysin Coated Slides Bem…

Representative Results

Det blev tidligere rapporteret, at ALT overlevende kan komme ud telomerase-mangelfuld mutant, TRT-1 (ok410), i lav frekvens ved at replikere internt lokaliserede 'Skabelon for ALT (Tält) sekvenser for telomer vedligeholdelse 2. Ved hjælp af PNA-probe, var vi i stand til at visualisere telomerer i dissekerede gonaderne (figur 2A). Den svage telomer-signalet blev påvist både i TRT-1 (ok410) og ALT overlevende. Den fuzzy signal blev over…

Discussion

Den største fordel ved vores protokol er enkeltheden af ​​proceduren uden mærkbar skade på morfologien af ​​cellestrukturen. Adskillige trin blev optimeret til C. elegans FISH i denne protokol. De kritiske trin for en vellykket FISH omfatter mærkning af sonder, fiksering af embryoner og penetration. Digoxigenin-dUTP mærkning metode giver en nem-at-bruge metoden ved PCR eller nick-translation mærkning. For at mærke lang målsekvens, er nick-translation foretrækkes. I dette tilfælde bør proberne…

Declarações

The authors have nothing to disclose.

Acknowledgements

Mutant worm strains were kindly provided by the Caenorhabditis Genetics Center. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C1277).

Materials

PNA probe PANAGENE custom order
Anti-Digoxigenin-Fluorescein, Fab fragments Roche 11207741910 use 1:200 diluted in PBST
Digoxigenin-dUTP Roche 11573152910
Bovine serum albumin SIGMA-ALDRICH A-7906
Paraformaldehyde SIGMA-ALDRICH P-6148 prepare 4% paraformaldehyde by heating in DW with few drops of NaOH. add 0.1 volume of 10x PBS.
Vectashield Vector Laboratories H-1200
Hybridizaiton solution 3X SSC, 50% formamide, 10% (w/v) dextran sulfate, 50 ug/ml heparin, 100 ug/ml yeast tRNA , 100ug/ml sonicated salmon sperm DNA
Hybridizaiton wash solution 2X SSC, 50% formamide
Formamide BIONEER C-9012 toxic
Methanol Carlo Erba
Acetone Carlo Erba
Heparin SIGMA-ALDRICH H3393 make 10 mg/ml for stock solution
Dextran sulfate SIGMA-ALDRICH 67578
10X PBS For 1 Liter DW : 80 g NaCl, 2.0 g KCl, 27 g Na2HPO4:7H2O, 2.4 g KH2PO
PBST 1X PBS, 0.1% tween-20
Polysorbate 20 SIGMA-ALDRICH P-2287 Commercial name is Tween-20
Poly-L-Lysine solution (0.1 % w/v) SIGMA-ALDRICH P-8920 prepare fresh 0.01 % w/v solution before use
M9 3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, H2O to 1 L
Bleaching solution 20% sodium hypochlorite, 0.5 M KOH
Antibody buffer 1X PBST, 1mM EDTA, 0.1% BSA, 0.05% Sodium azide (toxic)
Blocking solution Antibody buffer with 5% bovine serum albumin (BSA)
illustra Microspin G-50 GE healthcare 27-53310-01
20X SSC To make 1L, 175.3 g of NaCl, 88.2 g of sodium citrate, H2O to 1 L, adjust pH to 7.0
2X SSCT 2X SSC, 0.1 % tween-20
10x digoxigenin-dUTP mix 1 mM dATP, 1 mM dGTP, 1 mM dCTP, 0.65mM dTTP, 0.35mM DIG-11-dUTP
PCR purification columns Cosmo genetech CMR0112
Glass cleaner / ULTRA CLEAN Dukssan pure chemicals 8AV721
Multi-well glass slide MP biomedicals 96041205
Nematode growth media to make 1 L, 3 g of NaCl, 17 g of agar, 2.5 g of peptone, H2O to 974 mL. Autoclave and cool the flask. Add 1 mL of 1M CaCl2, 1 ml of 4 mg/mL cholesterol in ethanol, 1 ml of 1 M MgSO4, 25 mL of 1 M KPO4.
Levamisole SIGMA-ALDRICH 196142
Razor Feather blade No. 11
Rnase A Enzynomics
BSA SIGMA-ALDRICH A7906
Equipments
Confocal microsope Zeiss LSM 510 EC Plan-Neofluar 100x was used as objective lens.
Dry block / aluminum block Labtech LBH-T03 Set temperature to 80℃
Humid chamber Plastic box filled with paper towel soaked in DW
Image Analysis Software  Dr. Peter Landsdorp TFL-telo http://www.flintbox.com/public/project/502

Referências

  1. Reddel, R. R., Bryan, T. M., Murnane, J. P. Immortalized cells with no detectable telomerase activity. A review. Biochemistry-Moscow. 62, 1254-1262 (1997).
  2. Seo, B., et al. Telomere maintenance through recruitment of internal genomic regions. Nat Commun. 6, 8189 (2015).
  3. Cesare, A. J., Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 11, 319-330 (2010).
  4. Meier, B., et al. trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase. Plos Genetics. 2, 187-197 (2006).
  5. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, 47 (2002).
  6. Raices, M., Maruyama, H., Dillin, A., Karlseder, J. Uncoupling of longevity and telomere length in C. elegans. PLoS Genet. 1, 30 (2005).
  7. Southern, E. M. Detection of Specific Sequences among DNA Fragments Separated by Gel-Electrophoresis. Journal of Molecular Biology. 98, 503 (1975).
  8. Lee, M., et al. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res. 42, 1733-1746 (2014).
  9. Cheung, I., et al. Strain-specific telomere length revealed by single telomere length analysis in Caenorhabditis elegans. Nucleic Acids Res. 32, 3383-3391 (2004).
  10. Shtessel, L., et al. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways. G3. 3, 305-313 (2013).
  11. Duerr, J. Immunohistochemistry. WormBook (The C. elegans Research Community). , (2006).
  12. Phillips, C. M., McDonald, K. L., Dernburg, A. F. Cytological analysis of meiosis in Caenorhabditis elegans. Meiosis: Volume 2, Cytological Methods. , 171-195 (2009).
  13. Emanuel, J. R. Simple and efficient system for synthesis of non-radioactive nucleic acid hybridization probes using PCR. Nucleic acids research. 19, 2790 (1991).
  14. Stiernagle, T. Maintenance of C. elegans. WormBook. , 1-11 (2006).
  15. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., Ceron, J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. , e4019 (2012).
  16. Poon, S. S. S., Martens, U. M., Ward, R. K., Lansdorp, P. M. Telomere length measurements using digital fluorescence microscopy. Cytometry. 36, 267-278 (1999).
  17. Ferreira, H. C., Towbin, B. D., Jegou, T., Gasser, S. M. The shelterin protein POT-1 anchors Caenorhabditis elegans telomeres through SUN-1 at the nuclear periphery. J Cell Biol. 203, 727-735 (2013).
  18. Lee, M. H., Schedl, T. RNA in situ hybridization of dissected gonads. WormBook. , 1-7 (2006).
  19. Tabara, H., Motohashi, T., Kohara, Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 24, 2119-2124 (1996).
  20. Poon, S. S., Lansdorp, P. M. Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol. 18, 14 (2001).
check_url/pt/54224?article_type=t

Play Video

Citar este artigo
Seo, B., Lee, J. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans. J. Vis. Exp. (114), e54224, doi:10.3791/54224 (2016).

View Video