Summary

工程三维上皮组织细胞外基质中嵌入

Published: July 10, 2016
doi:

Summary

该原稿描述了软基于光刻技术工程师三维(3D)的均匀阵列由细胞外基质包围限定的几何形状的上皮组织。这种方法是适合于多种细胞类型和实验的上下文,并允许对于相同重复的高通量筛选。

Abstract

The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

Introduction

支上皮组织,称为分支形态的发展,是由细胞衍生的,物理的和环境因素调节。在乳腺,分支形态是通过该引导集体细胞迁移创建树形结构一个迭代过程。第一步是从乳管主芽的形成,其次是分支起始和延长1,2。分支的侵入周围基质是由类固醇激素在青春期的全身性释放诱导。新的主芽,然后从现有分行的两端发起,而这个过程继续创造上皮树3。虽然许多重要的生化信号已经确定,指导这个复杂的发展过程,目前缺乏细胞生物学机制的全面了解。此外,在特定的线索的影响机理研究难以从experi解构体内 ments,因为精确时空扰动和测量常常是不可能的。

三维(3D)培养技术,例如全器官培养,主要类器官和细胞培养模型,是系统地研究组织形态4-6的基本机制的有用工具。这些可以用于确定特定因素的影响单独,例如机械力和生化信号,对各种细胞的行为,包括迁移,增殖和分化的是特别有用的。6工程化细胞培养模型,特别是容易使扰动的单个细胞和它们的微环境。

一个这样的养殖模式使用基于微细加工的方法来工程师控制的三维结构模型的乳腺上皮组织在与一个感应一贯和可重复形成集体迁移分支机构ppropriate生长因子。模型的主要优点是能够精确地操纵和测量的物理和生化因素,如机械应力的模式,具有很高的统计置信的影响的能力。该技术中,用计算模型一起,已经被用来确定物理和生化信号的乳腺上皮组织和其它支上皮7-11的正常发展的指导的相对贡献。这里介绍的是用于构建这些模型的组织,它可以被容易地扩展到其它类型的细胞和细胞外基质(ECM)凝胶的详细协议,其用作治疗剂的测试的潜在工具。

Protocol

1.溶液的制备以制备胰岛素的5毫克/毫升的溶液, 用蒸馏水用5mM盐酸(HCl)稀释粉末胰岛素库存(500毫克胰岛素在100ml溶剂)。制备100ml加入50μl浓HCl至100ml蒸馏水溶剂(DH 2 O)。 使PBS的1倍溶液,稀释10倍磷酸盐缓冲盐水(PBS)原液在无菌条件下与卫生署2 O至1倍。 制备聚二甲基硅氧烷(PDMS)弹性体溶​​液如下:1(重量:重量)的比例与PDMS的预聚物?…

Representative Results

乳腺上皮组织微细化一般原理 的微细加工程序概述了实验工作流的一般原理图如图1所示。最终的结果是被完全嵌入的ECM凝胶中相同的几何形状和间距的上皮组织的阵列。代表性实验采用牛I型以4毫克/毫升的浓度胶原凝胶培养EpH4小鼠乳腺上皮细胞。为了确保工程组织的最高质量,在协议中列出的技术应密切随访。已被塑造成?…

Discussion

The protocol described above outlines a method to produce identical epithelial tissues of pre-defined shape, enabling spatial control of the mechanical stress experienced by cells in the tissue. An elastomeric mold is used to create cavities in type I collagen that are then filled with epithelial cells and covered with an additional collagen layer such that cells are completely encapsulated in a 3D collagen matrix environment. Further culture of these tissues and treatment with growth factors to induce branching from the…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由来自美国国立卫生研究院(HL118532,HL120142,CA187692),大卫和露西尔·帕卡德基金会,卡米尔和亨利德雷福斯基金会和巴勒斯补助部分支持欢迎基金。 ASP是由夏洛特伊丽莎白宝洁尊敬的奖学金的部分资助。

Materials

Polydimethylsiloxane (PDMS) Ellsworth Adhesives Sylgard 184
PDMS curing agent Ellsworth Adhesives Sylgard 184
Lithographically patterned silicon master self-made N/A
Plastic weigh boat Fisher Scientific 08-732-115
100-mm-diameter Petri dishes BioExpress D-2550-2
Ethyl Alcohol 200 Proof Pharmco-Aaper 111000200 Make a 70% EtOH (v:v) solution by mixing with dH2O
Razor blade American Safety Razor 620179
1:1 Dulbecco’s Modified Eagle’s Medium : Ham’s F12 Nutrient Mixture (DMEM/F12) (1:1) Hyclone SH30023FS
Fetal Bovine Serum (FBS) Atlanta Biologicals S11150H
10x Hank’s balanced salt solution (HBSS) Life Technologies 14185-052
Insulin Sigma Aldrich I6634-500MG
Gentamicin Life Technologies 15750-060
10X Phosphate-buffered saline (PBS) Fisher Scientific BP399-500
Sodium hydroxide (NaOH) Sigma Aldrich 221465-500G
Bovine type I collagen (non-pepsinized) Koken IAC-50
Albumin from bovine serum (BSA) Sigma Aldrich A-7906
Curved stainless steel tweezers Dumont 7
35-mm-diameter tissue culture dishes BioExpress T-2881-6
15 mL conical tubes BioExpress C-3394-2
1.5 mL Eppendorf Safe-Lock Tube USA Scientific 1615-5500
Circular #1 glass coverslips, 15-mm in diameter Bellco Glass Inc. Special order
0.05% 1X Trypsin-EDTA Life Technologies 25300-054
Paraformaldehyde VWR 100503-916
Triton X-100 Perkin Elmer N9300260 Detergent
HGF Sigma Aldrich H 9661 Resuspended in dH2O at 50 mg/mL
Rabbit anti-mouse FAK antibody Life Technologies AMO0672
Goat anti-rabbit Alexa 488 antibody Life Technologies A-11034
Adobe Photoshop Adobe N/A Used for color-coding pixel frequency maps.
FIJI (ImageJ) NIH N/A Free image analysis software used for thresholding, registering, and overlaying images to create a pixel frequency map. The StackReg plugin was used for registering binary images.

Referências

  1. Affolter, M., et al. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell. 4 (1), 11-18 (2003).
  2. Zhu, W., Nelson, C. M. PI3K signaling in the regulation of branching morphogenesis. Biosystems. 109 (3), 403-411 (2012).
  3. Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8 (1), 201 (2006).
  4. Fata, J. E., et al. The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol. 306 (1), 193-207 (2007).
  5. Ip, M. M., Darcy, K. M. Three-dimensional mammary primary culture model systems. J Mammary Gland Biol Neoplasia. 1 (1), 91-110 (1996).
  6. Lo, A. T., Mori, H., Mott, J., Bissell, M. J. Constructing three-dimensional models to study mammary gland branching morphogenesis and functional differentiation. J Mammary Gland Biol Neoplasia. 17 (2), 103-110 (2012).
  7. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A., Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 314 (5797), 298-300 (2006).
  8. Gjorevski, N., Nelson, C. M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol (Camb). 2 (9), 424-434 (2010).
  9. Gjorevski, N., Nelson, C. M. Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys J. 103 (1), 152-162 (2012).
  10. Gjorevski, N., Piotrowski, A. S., Varner, V. D., Nelson, C. M. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep. 5, 11458 (2015).
  11. Zhu, W., Nelson, C. M. PI3K regulates branch initiation and extension of cultured mammary epithelia via Akt and Rac1 respectively. Dev Biol. 379 (2), 235-245 (2013).
  12. Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., Bissell, M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 105 (2), 223-235 (1989).
  13. Hirai, Y., et al. Epimorphin functions as a key morphoregulator for mammary epithelial cells. J Cell Biol. 140 (1), 159-169 (1998).
  14. Pavlovich, A. L., Manivannan, S., Nelson, C. M. Adipose stroma induces branching morphogenesis of engineered epithelial tubules. Tissue Eng Part A. 16 (12), 3719-3726 (2010).
check_url/pt/54283?article_type=t

Play Video

Citar este artigo
Piotrowski-Daspit, A. S., Nelson, C. M. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix. J. Vis. Exp. (113), e54283, doi:10.3791/54283 (2016).

View Video