Summary

유리 표면 기능화를 통해 표적 세포 격리 방법

Published: September 20, 2016
doi:

Summary

This protocol describes customizable surface functionalization of the desthiobiotin, streptavidin, and APTES system in order to isolate specific cell types of interest. In addition, this manuscript covers the applications, optimization, and verification of this process.

Abstract

One of the limiting factors to the adoption and advancement of personalized medicine is the inability to develop diagnostic tools to probe individual nuances in expression from patient to patient. Current methodologies that try to separate cells to fill this niche result in disruption of physiological expression, making the separation technique useless as a diagnostic tool. In this protocol, we describe the functionalization and optimization of a surface for the cellular capture and release. This functionalized surface integrates biotinylated antibodies with a glass surface functionalized with an aminosilane (APTES), desthiobiotin and streptavidin. Cell release is facilitated through the introduction of biotin, allowing the recollection and purification of cells captured by the surface. This release is done through the targeting of the secondary moiety desthiobiotin, which results in a much more gentle release paradigm. This reduction in harsh reagents and shear forces reduces changes in cellular expression. The functionalized surface captures up to 80% of cells in a single cell mixture and has demonstrated 50% capture in a dual-cell mixture. Applications of this technology to xenografts and cancer separation studies are investigated. Quantification techniques for surface verification such as plate reader and ImageJ analyses are described as well.

Introduction

현재 벤치 탑 세포 분리 방법 (예, 형광 활성화 셀이 1 정렬, 레이저 캡처 마이크로 해부 (2), 면역 자기 비드 분리 1) 준비 및 정렬의 몇 시간이 걸릴 수 있습니다. 이 큰 시간 규모는 생리적 반응 (3)의 대표하지 분석 결과, 생리적 반응과 표현 수준에 영향을 줄 수 있습니다. 시스템은 신속하고 효율적으로 생체 의학 애플리케이션에 세포 분리 및 농축을 향상시키기 위해 세포 표면 수용체 수준을 중단없이 특정 세포 유형을 분리 할 수​​있는 요구된다. 따라서, 우리의 접근 방식에 대한 이론적 근거는 세포 분리를위한 부드러운 접근 방식을 개발하는 것입니다.

은 "칩에 연구소는"개념은 크기 빨리 (시간 – 투 – 분) 세포 분리의 주문 약속을 제공하며, 가장 자주 표면에 세포를 캡처하고 세포 또는 세포 내 콩트를 방출 포함물리 4,5를 통해 국세청 또는 화학적 방법 6. 이러한 방법은 체외 배양 (12, 13)에 대한 세포를 제공하는 경우에도 RNA 발현 9-11, 식별, 단백질 7,8 식을 식별하거나 몇 가지 장점을 제공하지만, 이러한 기술의 대부분은 이러한 세포 수용체 프로파일로 인해에게로 진단로 번역 할 수 없습니다 자신의 비 생리 학적 환경. 이러한 정확한 생리 학적 데이터를 생성하지 않습니다이 해제 에이전트를 사용하여 세포 수용체의 정량화 기법을 의미 이러한 수용체 수량 14, 15에 영향을 미칠 수있는 콜라게나, 같은 효소 리프팅 에이전트. 세포 용해는 기본 표면 수용체 사이의 분화를 방지하고 이전 16 내재화 된 것과. 이 프로토콜은 세포 분리를위한 빠르고 부드러운 접근 방식을 설명합니다.

Protocol

1. 유리 표면 청소 및 준비 시약 청소 50 % 전력에서 5 분 동안 산소 플라즈마 시스템에서 유리 표면을 놓는다. APTES 50 μL 및 원뿔형 튜브에 2.45 mL의 에탄올을 첨가하여, 2.5 mL의 2 % 재구성 (3- 아미노 프로필) 트리에 톡시 실란 (APTES) 용액을 제조 하였다. 2. APTES와 DSB의 기능화 표면에 APTES 솔루션을 추가합니다. 8 웰 플레이트에 잘 당 피펫 150 μL. 24 웰 ?…

Representative Results

우리는 세포 포착 (도 3A) 및 MCF7GFP 세포의 세포 분리 (도 3C)뿐만 아니라, 생균 제어 (도 4)이 표시 프로토콜 사용. 60 % 및 80 % (그림 3C) 발표 된 바와 같이 우리는 세포 캡처를 정량화. 우리는 RAW 264.7 대식 세포 및 MCF7GFP 세포의 혼합물에이 방법을 확장하면, RAW 식세포의 50 %를 점령 하였다 (도. 3D) 및 RAW 식세포의 8…

Discussion

세포 분리 기술의 향상은 혈관 생물학 (19)의 세포 재생 생물학 프로그래밍 및 혈관 신생 신호 줄기, 신경 과학 (18)의 구조 – 기능 관계의 과학적 연구를 발전한다. 실제로, 일차 세포 배양 물 (20)은 (예 된 HUVEC), 혈관 생물학 주로 세포 분리 기술의 사용을 통해 수행된다. 세포 격리는 최근 세포막 수용체 3,14,15,19,21 정량적 흐름 (qFlow) 계측법 분석에 사용 하였?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We would like to thank the American Cancer Society, Illinois Division (282802) and the National Science Foundation CBET (1512598) for funding support. We also would like to thank Dr. Dianwen Zhang from the University of Illinois Beckman Institute for microscopy training. Finally, we would like to thank Jared Weddell, Stacie Chen, and Spencer Mamer for insightful discussions.

Materials

(3-Aminopropyl) triethoxysilane (APTES) Acros Organics 919-30-2 Used to make 2% APTES solution
Plasma Cleaner Pico Diener Model 1 Cleans surfaces and allows for bonding of PDMS to glass
d-Desthiobiotin (DSB) Sigma D20655 Used as the releasing mechanism in the cellular capture surface.
dimethyl sulfoxide (DMSO) British Drug Houses (BDH) BDH1115-1LP Dissolves the DSB into solution
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) Thermo-Scientific 5g: 22980
25g: 22981
Activates Carboxylic Acids and allows binding of proteins to glass surface.
uncoated 8-well culture slide BD Falcon Case of 24: 354118
Case of 96: 354108
Used in cellular experiments involving Zeiss fluorescence microscope such as initial capture and release quantification experiments
Glass bottom 24-well plates MatTek P24G-0-13-F Used in cellular experiments involving the plate reader such as antibody and cellular titration experiments
Mercaptoethanol Science Lab 60-24-2 Used to quench reaction between EDC and DSB
4-Morpholinoethanesulfonic acid hydrate
(MES Hydrate 99%)
Fisher Scientific AC172590250 Used to make 0.1 M MES Buffer for use in EDC reaction
Precision Oven Thermo Scientific 11-475-153 Used in curing of PDMS and APTES layer.
Titramax 1000 Shaker Heidolph 13-889-420 Used to ensure even distribution of APTES on surfaces.
1X Streptavidin 5mg
[e7105-5mg]
Proteo Chem 9013-20-1 Biotin-binding protein
May cause irritation
5 cm Glass Dish Fisher Scientific 08748A Used in HUVEC studies as well as future profiling studies.
14 cm Petri Dish with Cover Sigma-Aldrich Z717231 Used to hold samples being functionalized and transport them.
MCF7-GFP cells Cell Biolabs AKR211 Stored in liquid nitrogen
RAW264.7
mouse macrophages
ATCC TIB-71 Gifted to us from Smith lab at the University of Illinois. Stored in liquid nitrogen
TrypLE Life Technologies 12605036 Stored in 100mL at room temperature
Dulbecco’s modified Eagle medium Cell Media Facility at School of Chemical Sciences at UIUC 50003PC Supplier: Corning
Nonessential amino acids Cell Media Facility at School of Chemical Sciences at UIUC 25-025-CI Already added into DMEM by facility.
Supplier: Corning
10% fetal bovine serum Fisher Scientific 03-600-511 Stored in 500mL at < -10⁰C
1% Penicillin–Streptomycin Life Sciences Storeroom at UIUC 17602e Supplier: VWR
Stored in 100 ml at 4⁰C
Cell scraper Fisher Scientific 12-565-58 Small 23cm 50 pack
Cell Dissociation Solution Corning MT-25-056CI Used to lift cells non-enzymatically for the use in cell experiments
Hemacytometer Hausser 02-671-54 Used to count cells for quantification of cell solutions and capture and release effectivity.
Biotin Amresco 58-85-5 Used to release cells from surface.
HBSS Created from Recipe N/A Used to keep cells alive in suspension as well as wash surfaces of non-specific binding. (Adapted from Cold Spring Harbor Protocols): In 500 mL, use 4 g NaCl, .2 g KCl, .0402 g Na2PO4*7H2O, .03 g KH2PO4 and .5 g Glucose. Add DI water to get to 500 mL, filter, and then refrigerate.
HLA-ABC Antibody BioLegend 311402 Antibody used to capture MCF7gfp cells
hIgG Antibody BioLegend HP6017 Antibody used to capture MCF7gfp cells
MCF7 GFP cells Cell Biolabs AKR-211 Luminal Breast Cancer line that has been transfected with green fluorescent protein.
Assorted Conicals Thermo-Scientific 15mL: 12-565-268 50/15 mL plastic conicals for storing solutions and aliquots.
Mini-Tube Rotators (End over End Mixer) Fisher Scientific 05-450-127 Used to incubate antibody and mix other cellular solutions in order to mix
Axiovert 200M (Fluorescence Microscope) Zeiss N/A Zeiss Axiovert 200 M inverted florescence microscope.
Zeba Desalting columns Thermo-Scientific PI-87770 Used to purify newly biotinylated antibodies after the use of the Biotinylation Kit. Instructions provided at: http://www.funakoshi.co.jp/data/datasheet/PCC/89894.pdf
EZ Link Sulfo NHS Low Weight Biotinylation Kit Thermo- Scientific Used to biotinylate antibodies to allow them to integrate with the capture surface
Plate Reader BioTek Synergy HTX Multimode Reader Used to quantitatively measure fluorescent intensity in the titration experiments.

Referências

  1. Erdbruegger, U., Haubitz, M., Woywodt, A. Circulating endothelial cells: a novel marker of endothelial damage. Clin. Chim. Acta. 373 (1-2), 17-26 (2006).
  2. De Spiegelaere, W., Cornillie, P., Van Poucke, M., Peelman, L., Burvenich, C., Van den Broeck, W. Quantitative mRNA expression analysis in kidney glomeruli using microdissection techniques. Histol. Histopathol. 26 (2), 267-275 (2011).
  3. Chen, S., Guo, X., Imarenezor, O., Imoukhuede, P. I. Quantification of VEGFRs, NRP1, and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, and Cross-Family Ligand Regulation. Cell. Mol. Bioeng. 8 (3), 383-403 (2015).
  4. Cheung, L. S. L., et al. Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel. Lab Chip. 9 (12), 1721-1731 (2009).
  5. Privorotskaya, N., et al. Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. Lab Chip. 10 (9), 1135-1141 (2010).
  6. Park, K., Akin, D., Bashir, R. Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array. Biomed. Microdevices. 9 (6), 877-883 (2007).
  7. Galletti, G., Sung, M., Vahdat, L. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip. 14 (1), 147-156 (2014).
  8. Schudel, B. R., Choi, C. J., Cunningham, B. T., Kenis, P. J. A. Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip. 9 (12), 1676-1680 (2009).
  9. Lien, K. Y., Chuang, Y. H., et al. Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lab Chip. 10 (21), 2875-2886 (2010).
  10. Stott, S. L., et al. Isolation of circulating tumor cells using a. PNAS. 107 (35), 18392-18397 (2010).
  11. Yu, M., Ting, D., Stott, S., Wittner, B., Ozsolak, F. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 487 (7408), 510-513 (2012).
  12. Sheng, W., Ogunwobi, O., Chen, T., Zhang, J. Capture,+release+and+culture+of+circulating+tumor+cells+from+pancreatic+cancer+patients+using+an+enhanced+mixing+chip.”>>Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 14 (1), 89-98 (2014).
  13. Zheng, X., Cheung, L. S. L., Schroeder, J. A., Jiang, L., Zohar, Y. A high-performance microsystem for isolating circulating tumor cells. Lab Chip. 11 (19), 3269-3276 (2011).
  14. Imoukhuede, P. I., Popel, A. S. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317 (7), 955-965 (2011).
  15. Imoukhuede, P. I., Popel, A. S. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One. 7 (9), e44791 (2012).
  16. Ludwig, A., Kretzmer, G., Schügerl, K. Determination of a "critical shear stress level" applied to adherent mammalian cells. Enzyme Microb. Technol. 14 (3), 209-213 (1992).
  17. Ansari, A., Lee-Montiel, F. T., Amos, J., Imoukhuede, P. I. Secondary anchor targeted cell release. Biotechnol. Bioeng. 112 (11), 2214-2227 (2015).
  18. Drenan, R. M., Nashmi, R., Imoukhuede, P., Just, H., McKinney, S., Lester, H. A. Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol. Pharmacol. 73 (1), 27-41 (2008).
  19. Imoukhuede, P. I., Dokun, A. O., Annex, B. H., Popel, A. S. Endothelial cell-by-cell profiling reveals temporal dynamics of VEGFR1 and VEGFR2 membrane-localization following murine hindlimb ischemia. Am J Physiol Hear. Circ Physiol. 4 (8), H1085-H1093 (2013).
  20. van Beijnum, J. R., Rousch, M., Castermans, K., van der Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nat. Protoc. 3 (6), 1085-1091 (2008).
  21. Imoukhuede, P. I., Popel, A. S. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 3 (2), 225-244 (2014).
  22. BD Biosciences. . CD Marker Handbook: Human and Mouse. , (2010).
  23. Tanzeglock, T., Soos, M., Stephanopoulos, G., Morbidelli, M. Induction of mammalian cell death by simple shear and extensional flows. Biotechnol. Bioeng. 104 (2), 360-370 (2009).
  24. Perritt, D., Wong, P., Macpherson, J. L., Henrichsen, K., Symonds, G., Pond, S. . Processing Blood. , (2014).
  25. Fukuda, S., Schmid-Schönbein, G. W. Centrifugation attenuates the fluid shear response of circulating leukocytes. J. Leukoc. Biol. 72 (July), 133-139 (2002).
  26. dela Paz, N. G., Walshe, T. E., Leach, L. L., Saint-Geniez, M., D’Amore, P. A. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 125 (Pt 4), 831-843 (2012).
  27. Allard, W. J., et al. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant diseases.&#34. Clinical Cancer Research. 10, 6897-6904 (2005).
  28. Nagrath, S., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 450 (7173), 1235-1239 (2007).
  29. Chen, S., Weddel, J., Gupta, P., Conard, G., Parkin, J., Imoukhuede, P. I. QFlow Cytometer-Based Receptoromic Screening: A High-throughput Quantification Approach Informing Biomarker Selection and Nanosensor. Submiss. , (2016).
  30. Vasa, M., et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89 (1), E1-E7 (2001).
  31. Hirsch, J. D., Eslamizar, L., et al. Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308 (2), 343-357 (2002).
  32. Wilchek, M., Bayer, E. A. Applications of Avidin-Biotin Technology: Literature Survey. Methods Enzymol. 152 (1), 183-189 (1987).
  33. Wu, X., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21 (1), 41-46 (2002).
  34. Lee-Montiel, F. T., Imoukhuede, P. I. Engineering quantum dot calibration standards for quantitative fluorescent profiling. J. Mater. Chem. B. 1, 6434 (2013).
  35. Hornes, E., Korsnes, L. . Oligonucleotide-linked magnetic particles and uses thereof. , (1996).
  36. Naranbhai, V., et al. Impact of blood processing variations on natural killer cell frequency, activation, chemokine receptor expression and function. J. Immunol. Methods. 366 (1-2), 28-35 (2011).
  37. Yadav, A. R., Sriram, R., Carter, J. A., Miller, B. L. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces. Mater. Sci. Eng. C. 35 (1), 283-290 (2014).
check_url/pt/54315?article_type=t

Play Video

Citar este artigo
Ansari, A., Patel, R., Schultheis, K., Naumovski, V., Imoukhuede, P. I. A Method of Targeted Cell Isolation via Glass Surface Functionalization. J. Vis. Exp. (115), e54315, doi:10.3791/54315 (2016).

View Video