Summary

تطوير نظام إدراج المشارك ثقافة نوعين الخلوية في غياب خلية خلية الاتصال

Published: July 17, 2016
doi:

Summary

In multicellular organisms, secreted soluble factors elicit responses from different cell types as a result of paracrine signaling. Insert co-culture systems offer a simple way to assess the changes mediated by secreted soluble factors in the absence of cell-cell contact.

Abstract

The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

Introduction

دراسة الأنسجة والأعضاء أو الأنظمة في المختبر هي محاولة لتبسيط العلاقات المعقدة جدا القائمة بين عدة أنواع فرعية الخلوية التي تضم الكائنات متعددة الخلايا. في الواقع، في الدراسات المختبرية تجعل من الممكن الحصول على فهم مفصل للسكان خلية واحدة. هناك نوعان من المزايا الرئيسية لإجراء التجارب في المختبر: 1) انخفاض التفاعلات الخلوية، و2) القدرة على التعامل بسهولة البيئة الخلوية. العلماء ومن هنا، سمحت هذه المزايا اثنين للتنبؤ السلوك من أنواع معينة من الخلايا في الجسم الحي، مما أدى إلى القدرة على تنظيم النتائج من التأثيرات خارجي في الكائنات كلها. في هذا المعنى، في المختبر زراعة الخلايا غالبا ما يعمل كجسر يربط علوم الحياة الأساسية والتطبيقية. ومع ذلك، هناك أيضا العديد من عيوب العمل في المختبر، واحد أهمها أن تحفظ معين قد يسكن في فيزيولوجيآل أهمية الظواهر المرصودة. في الواقع، عندما يزرع نوع خلية واحدة في وعاء، تفقد الثقافة، إلى حد مختلف، وصلات خلية خلية مع أنواع الخلايا الأخرى، ومساهمتها في البيئة السائلة من الأنسجة والكائنات الأصلية، والمراسي داخل النسيج الذي مكنها من التمسك هيكل ثلاثي الأبعاد خاص حاسما في بعض الأحيان من أجل وظيفة الخلية.

وقد تم تناول مسألة العلاقات خلية خلية من خلال تطوير تقنيات زراعة المختلطة. في هذه الطريقة، وتزرع اثنين أو أكثر من السكان الخلية معا في سفينة الثقافة نفسها. ومع ذلك، هذه الثقافات مختلطة تحمل المضايقات الهامة. من جهة، وبعض أنواع فرعية الخلية لا تتفاعل جسديا مع بعضها البعض في الأنسجة المنشأ والاعتماد فقط على الاتصالات نظير الصماوي التي لحقت العوامل القابلة للذوبان يفرز ومستقبلات المجاورة. هذا هو الحال لعدة عمليات الالتهابات التي تعتمد على إشارات خلوى القريبة. في ج مختلطةultures، والتفاعلات المادية التي لا يمكن تجنبها وتجعل من المستحيل لدراسة الاتصالات نظير الصماوي في غياب الاتصالات خلية خلية التي يمكن أن تسفر عن نتائج المتغيرة. من ناحية أخرى، وتحقيق التفسيرات خلايا محددة من داخل الخليط السكاني يصبح غير مجد دون استخدام تقنيات الفصل القاسية التي يمكن أن تؤثر بشكل كبير على النتائج.

لحل هذه القضايا الهامة، وقد تم تطوير استخدام وسائل الإعلام مشروطة كأسلوب السماح للثقافات مجزأة ودراسة الإشارات نظير الصماوي. يتطلب هذا الأسلوب نقل طاف من نوع خلية واحدة، وبالتالي اسمه مكيفة المتوسطة، إلى الآبار التي تحتوي على مجموعة أخرى من الخلايا. ومع ذلك، ولكن هناك عائقا مهما هو أن جزيئات قصيرة الأجل لا البقاء على قيد الحياة لفترة كافية في المتوسط ​​مكيفة على أن يتم تحويلها إلى آبار السكان الثاني من الخلايا. سيتم حتى جزيئات طويلة العمر تضعف إلى حد كبير مع مرور الوقت بسبب نشرها. وعلاوة على ذلك، سواء خليةالسكان يشارك فقط في مجال الاتصالات نظير الصماوي أحادي الاتجاه وليس في اتصال ثنائي الاتجاه النشط. وهذا يقود إلى عدم وجود إشارات ردود الفعل التي أمر حيوي في إعادة العلاقات متعددة الخلايا دقيقة لأنها موجودة في الجسم الحي.

ونتيجة لذلك وبدافع الحاجة لمحاكاة أفضل الأصلي في ظروف المجراة في المختبر في البيئة الخلوية، وقد تم تحقيق العديد من التطورات في تقنيات زراعة الخلايا على مر السنين. كان واحدا من التقدم الأكثر أهمية استخدام دعامات قابلة للاختراق مع الأغشية الصغيرة التي يسهل اختراقها لcompartmentalizing مزارع الخلايا، وتستخدم لأول مرة من قبل Grobstein في عام 1953 1. وقد جرى تصميم هذه الدعامات منفذة على مر السنين لاستيعاب العديد من أنواع الخلايا واستخدامها في العديد من التطبيقات المختلفة. في الوقت الحاضر، وهذه تدعم وجود تدرج كما جوفاء التي تم تصميمها للراحة في الآبار من لوحة زراعة الأنسجة multiwell أو في التعأطباق لار. في نظام الثقافة المشتركة، وإدراج يحتوي على نوع من الخلايا واحدة في حين البئر أو طبق يحتوي على السكان الخلوية الأخرى، مما يسمح لدراسة مساهمة اثنين من مجموعات مختلفة من الخلايا في بيئة الخلطية منها (الشكل 1). ونتيجة لذلك، يتم الحفاظ على الاستقطاب الخلوي (basolateral مقابل إفراز قمي أو استقبال إشارة)، مما يمنح أنظمة إدراج ثقافة مشتركة ميزة مهمة ضد الثقافات المختلطة وتقنيات المتوسطة مكيفة. تتوفر عدة أنواع من المواد غشاء، وأكثرها شيوعا هو البوليستر (PET)، والبولي (PC) أو المغلفة الكولاجين تترافلوروإيثيلين (PTFE)، وكانت موجودة في أحجام المسام مختلفة تتراوح من 0.4 ميكرومتر إلى 12.0 ميكرون. هذه الأصناف من المواد وأحجام المسام تقدم تشكيلة واسعة من إدراج ممارسة ملامح متغيرة ذات الصلة إلى الخصائص البصرية، وسمك الغشاء والالتزام الخلية التي جعلها عملية على مختلف المستويات ليلي يستخدم سبيل المثال لا الحصر:
-studyingتمايز الخلايا، التطور الجنيني، الانبثاث ورم وإصلاح الجرح بواسطة فحوصات chemotaxic من خلال نفاذية الأغشية.
-evaluating تغلغل المخدرات عن طريق تقييم وسائل النقل من خلال الطبقات الوحيدة الظهارية أو البطانية مثقف على دعامات قابلة للاختراق، و.
-إجراء خلية المشترك الثقافات لتحليل التحويرات سلوك الخلايا الناجم عن العوامل القابلة للذوبان يفرز في حالة عدم وجود خلية خلية الاتصال.

والغرض من هذه المقالة هو وصف المبادئ التوجيهية المنهجية العامة لأداء وظيفة الثالثة المذكورة أعلاه، وهذا هو لتقييم التغيرات الخلوية بوساطة العوامل القابلة للذوبان يفرز في حالة عدم وجود خلية خلية الاتصال باستخدام نظام إدراج ثقافة مشتركة. العديد من المجالات المختلفة للبحث الاستفادة من أنظمة إدراج ثقافة مشتركة من أجل الإجابة على الأسئلة ذات الصلة لتأثير العوامل القابلة للذوبان يفرز على السكان من الخلايا. في الواقع، يشير نظير الصماوي الذي ينظم السلوك الخلوي على مختلف المستويات هي ذات الصلة في جميع الأنسجةوالنظم، مما يجعل الأنظمة شارك في ثقافة إدراج لا غنى عنها لضمان التقدم في هذه المجالات. على العكس من ذلك، استخدام إدراج ان اؤكد ان نقل الإشارة هو عن طريق الاتصال المباشر خلية خلية وليس العوامل يفرز. واحدة من أهم استخدامات تدرج في الدراسات التهاب 2-14 حيث يتم تقييم تأثير السيتوكينات يفرز في مختلف اللاعبين الخلوي للمناعة. على وجه الخصوص، وقد استفادت الدراسة من التهاب في الجهاز العصبي المركزي (CNS) كثيرا من الدراسات إدراج الثقافة المشتركة، التي سمحت لتحديد أفضل الأدوار نظير الصماوي متميزة من الخلايا العصبية والخلايا الدبقية الصغيرة في القيادة neuroinflammation 15-21. وقد وضعت هذه الأنظمة أيضا لدراسة إمكانية المضادة للالتهابات من الجزيئات التي تعتمد على قدرتها على تقليل أو منع إفراز العوامل المؤيدة للالتهابات 22-26. الأبحاث المتعلقة بسرطان 27-31، ولا سيما الآليات الكامنة وراء الأوعية الدموية 32-34 وinflammatiعلى 35-42 في تكون الأورام، يستفيد أيضا من أنظمة إدراج ثقافة مشتركة. وعلاوة على ذلك، والعوامل القابلة للذوبان هي ذات أهمية قصوى في العمليات التي تقود التمايز والعديد من الدراسات قد استخدمت تدرج للإجابة على الأسئلة في هذا المجال بشكل خاص 43-50. في الجهاز العصبي المركزي، كما نرى الأنسجة العصبية لديها امكانات تجديد محدودة للغاية، ودراسة neurotrophism والعصبية هي الأساسية، وقد ضمنت على نطاق واسع عن طريق استخدام الخلايا الجذعية في أنظمة شارك في ثقافة 51-56. وبالإضافة إلى ذلك، تستخدم تدرج أيضا في مجالات متنوعة مثل أمراض الكلى 57،58، والتفاعلات البطانية والأوعية الدموية 59-62، موت الخلايا المبرمج يشير 63-65، والتهاب في السمنة ومتلازمة الأيض 22،23،66-67، الأذن الداخلية حماية خلايا الشعر 68،69، وحتى في فطر الفوعة 70،71 و 72،73 الطفيليات.

تقدم هذه المقالة المبادئ التوجيهية المنهجية العامة من أجل اقامة experimوالأنف والحنجرة في ضوء تقييم التغيرات الخلوية بوساطة العوامل القابلة للذوبان يفرز باستخدام نظام إدراج ثقافة مشتركة. على وجه الخصوص، سوف نركز اهتمامنا على الخلايا العصبية المشترك الثقافات واستخداماتها في دراسة عملية neuroinflammatory. وبالنظر إلى طيف واسع جدا من التجارب التي تدرج تجعل من الممكن التجريبية، فإنه أمر لا يطاق لتغطية كل من هذه التقنية زراعة الخلايا الجانب. وكمثال على ذلك، بروتوكول معين لقياس آثار السيتوكينات التي يفرزها lipopolysaccharide في (LPS) -activated الخلايا الدبقية الصغيرة N9 على الخلايا PC12 العصبية سيتم تفصيله، وتقديم فهم ملموس منهجية إدراج ثقافة مشتركة.

Protocol

ملاحظة: كل من الخطوات التالية يجب أن تتم تحت ظروف معقمة في غطاء تدفق الصفحي على النحو المطلوب لزراعة الخلايا الثديية. وبالإضافة إلى ذلك، فإن المبادئ التوجيهية العامة للزراعة الخلايا العقيمة المثلى تنطبق، على سبيل المثال.، ونبذ نصائح أي وقت أنها قد تؤدي إلى التل?…

Representative Results

استخدام نظم شارك في ثقافة إدراج يرتدي أهمية خاصة في دراسة العمليات neuroinflammatory التي تظهر العلاقات نظير الصماوي بين اللاعبين الخلوية المختلفة للجهاز العصبي المركزي. ويتم إنجاز الحصانة في الجهاز العصبي المركزي بشكل رئيسي من قبل خلايا مقيمة تسمى الخلا?…

Discussion

الخطوة الأكثر أهمية في أي نظام تجربة إدراج ثقافة مشتركة يسكن فعلا في اختيار إدراج المناسب لاستخدامها. يجب أن تؤخذ حجم المسام والمواد غشاء بعين الاعتبار شامل، دون أن ننسى أن تنظر في نوع من الخلايا التي سيتم المصنف، والغرض من هذه التجربة. على سبيل المثال، قد المقايسات c…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was funded by a Natural Sciences and Engineering Research Council (NSERC) Canada grant to MGM. JR is a NSERC-Vanier student fellow.

Materials

RPMI-1640 medium Sigma R8755 Warm in 37 °C water bath before use
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham Sigma D6421 Warm in 37 °C water bath before use, must be supplemented with 0.365 gm/L L-glutamine
Horse serum ATCC 30-2040 Warm in 37 °C water bath before use
Fetal bovine serum MultiCell 80350 Warm in 37 °C water bath before use
Nerve Growth Factor-7S from murine submaxillary gland Sigma N0513 Reconstitute the lyophilized powder in a solution of buffered saline or tissue culture medium containing 0.1–1.0% bovine serum albumin or 1-10% serum
Trypsin-EDTA solution Sigma T3924 Warm in 37 °C water bath before use
Lipopolysaccharides from Escherichia coli 055:B5 Sigma L2880 Toxic
Cell culture inserts for use with 24-well plates BD Falcon 353095 0.4 μm pores
24-well plates TrueLine TR5002 Coat with collagen before use
Routine PC12 cell culture medium Routine N9 cell culture medium
-       85% RPMI medium -       90% DMEM-F12 medium
-       10% heat-inactivated horse serum -       10% heat-inactivated horse serum
-       5% heat-inactivated fetal bovine serum
PC12 differentiation medium N9 treatment medium
-        99% RPMI medium -       99% DMEM-F12 medium
-        1% heat-inactivated fetal bovine serum -       1% heat-inactivated horse serum
-        50 ng/mL nerve growth factor
PC12 treatment medium
-        99% RPMI medium
-        1% heat-inactivated fetal bovine serum

Referências

  1. Grobstein, C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 172 (4384), 869-870 (1953).
  2. Hoffman, R. A. Intraepithelial lymphocytes coinduce nitric oxide synthase in intestinalepithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 278 (6), G886-G894 (2000).
  3. Zhang, W. C., et al. Regulatory T cells protect fine particulate matter-induced inflammatory responses in human umbilical vein endothelial cells. Mediators Inflamm. 2014, 869148 (2014).
  4. Vasileiadou, K., et al. alpha1-Acid glycoprotein production in rat dorsal air pouch in response to inflammatory stimuli, dexamethasone and honey bee venom. Exp. Mol. Pathol. 89 (1), 63-71 (2010).
  5. Talayev, V. Y., et al. The effect of human placenta cytotrophoblast cells on the maturation and T cell stimulating ability of dendritics cells in vitro. Clin. Exp. Immunol. 162 (1), 91-99 (2010).
  6. Elishmereni, M., et al. Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy. 66 (3), 376-385 (2011).
  7. Ishihara, Y., et al. Regulation of immunoglobulin G2 production by prostaglandin E(2) and platelet-activating factor. Infect. Immun. 68 (3), 1563-1568 (2000).
  8. Kranzer, K., Bauer, M., Lipford, G. B., Heeg, K., Wagner, H., Lang, R. CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon- gamma production and up-regulation of CD69 via induction of antigen- presenting cell-derived interferon type I and interleukin-12. Immunology. 99 (2), 170-178 (2000).
  9. Vendetti, S., Chai, J. G., Dyson, J., Simpson, E., Lombardi, G., Lechler, R. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J. Immunol. 165 (3), 1175-1181 (2000).
  10. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., Blum, S. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut. 47 (1), 79-87 (2000).
  11. Dono, M., et al. In vitro stimulation of human tonsillar subepithelial B cells: requirement for interaction with activated T cells. Eur. J. Immunol. 31 (3), 752-756 (2001).
  12. Yu, Y., et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J. Immunol. 166 (3), 1590-1600 (2001).
  13. Watanabe, T., Tokuyama, S., Yasuda, M., Sasaki, T., Yamamoto, T. Changes of tissue factor-dependent coagulant activity mediated by adhesion between polymorphonuclear leukocytes and endothelial cells. Jpn J. Pharmacol. 86 (4), 399-404 (2001).
  14. Krampera, M., et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 101 (9), 3722-3729 (2003).
  15. Bournival, J., Plouffe, M., Renaud, J., Provencher, C., Martinoli, M. G. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid. Med. Cell. Longev. 2012, 921941 (2012).
  16. Bureau, G., Longpré, F., Martinoli, M. G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J. Neurosci. Res. 86 (2), 403-410 (2008).
  17. Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., Lu, D. Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp. Ther. Med. 7 (5), 1065-1070 (2014).
  18. Luo, X., et al. BV2 enhanced the neurotrophic functions of mesenchymal stem cells after being stimulated with injured PC12. Neuroimmunomodulation. 16 (1), 28-34 (2009).
  19. Polazzi, E., Gianni, T., Contestabile, A. Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia. 36 (3), 271-280 (2001).
  20. Barger, S. W., Basile, A. S. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J. Neurochem. 76 (3), 846-854 (2001).
  21. Zujovic, V., Taupin, V. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: control of microglial activation. Methods. 29 (4), 345-350 (2003).
  22. Iwashita, M., et al. Valsartan, independently of AT1 receptor or PPARγ, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. Am. J. Physiol. Endocrinol. Metab. 302 (3), E286-E296 (2012).
  23. Oliver, E., et al. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 23 (9), 1192-1200 (2012).
  24. Tang, S. Y., Cheah, I. K., Wang, H., Halliwell, B. Notopterygium forbesii Boiss extract and its active constituent phenethyl ferulate attenuate pro-inflammatory responses to lipopolysaccharide in RAW 264.7 macrophages. A "protective" role for oxidative stress. Chem. Res. Toxicol. 22 (8), 1473-1482 (2009).
  25. De Boer, A. A., Monk, J. M., Robinson, L. E. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model. PLoS One. 9 (1), e85037 (2014).
  26. Li, Y., Liu, L., Barger, S. W., Mrak, R. E., Griffin, W. S. Vitamin E suppression of microglial activation is neuroprotective. J. Neurosci. Res. 66 (2), 163-170 (2001).
  27. Brizuela, L., et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol. 8 (7), 1181-1195 (2014).
  28. Yuan, L., Chan, G. C., Fung, K. L., Chim, C. S. RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFα in the microenvironment. Biochim. Biophys. Acta. 1843, 1834-1838 (2014).
  29. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U. S. A. 98 (21), 12072-12077 (2001).
  30. Lawrenson, K., Grun, B., Benjamin, E., Jacobs, I. J., Dafou, D., Gayther, S. A. Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia. 12 (4), 317-325 (2010).
  31. Liu, J., et al. BCR-ABL mutants spread resistance to non-mutated cells through a paracrine mechanism. Leukemia. 22 (4), 791-799 (2008).
  32. Giuliani, N., et al. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood. 102 (2), 638-645 (2003).
  33. Gupta, D., et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 15 (12), 1950-1961 (2001).
  34. Anderson, I. C., Mari, S. E., Broderick, R. J., Mari, B. P., Shipp, M. A. The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res. 60 (2), 269-272 (2000).
  35. Hoechst, B., et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces C4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 135 (1), 234-243 (2008).
  36. Karadag, A., Oyajobi, B. O., Apperley, J. F., Russell, R. G., Croucher, P. I. Human myeloma cells promote the production of interleukin 6 by primary human osteoblasts. Br. J. Haematol. 108 (2), 383-390 (2000).
  37. Garrido, S. M., Appelbaum, F. R., Willman, C. L., Banker, D. E. Acute myeloid leukemia cells are protected from spontaneous and drug- induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp. Hematol. 29 (4), 448-457 (2001).
  38. Heissig, B., Pasternak, G., Horner, S., Schwerdtfeger, R., Rossol, S., Hehlmann, R. CD14+ peripheral blood mononuclear cells from chronic myeloid leukemia and normal donors are inhibitory to short- and long-term cultured colony-forming cells. Leuk. Res. 24 (3), 217-231 (2000).
  39. Moore, M. B., Kurago, Z. B., Fullenkamp, C. A., Lutz, C. T. Squamous cell carcinoma cells differentially stimulate NK cell effector functions: the role of IL-18. Cancer Immunol Immunother. 52 (2), 107-115 (2003).
  40. Giuliana, N., et al. Human myeloma cells stimulate the receptor activator of nuclear factor- kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 100 (13), 4615-4621 (2002).
  41. Ye, Z., Haley, S., Gee, A. P., Henslee-Downey, P. J., Lamb, L. S. In vitro interactions between gamma deltaT cells, DC, and CD4+ T cells; implications for the immunotherapy of leukemia. Cytotherapy. 4 (3), 293-304 (2002).
  42. Zhang, X. M., Xu, Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res. 11 (6), 559-567 (2001).
  43. Zhang, M., et al. The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS One. 9 (4), e95583 (2014).
  44. Qu, C., et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int. J. Biochem. Cell. Biol. 45 (8), 1802-1812 (2013).
  45. Krassowska, A., et al. Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment. Exp. Cell. Res. 312 (18), 3595-3603 (2006).
  46. Darcy, K. M., et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev. Biol. Anim. 36 (9), 578-592 (2000).
  47. Spector, J. A. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast. Reconstr. Surg. 109 (2), 631-642 (2002).
  48. Khanolkar, A., Fu, Z., Underwood, L. J., Bondurant, K. L., Rochford, R., Cannon, M. J. CD4+ T cell-induced differentiation of EBV-transformed lymphoblastoid cells is associated with diminished recognition by EBV-specific CD8+ cytotoxic T cells. J. Immunol. 170 (6), 3187-3194 (2003).
  49. Fritsch, C. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J. Clin. Invest. 110 (11), 1629-1641 (2002).
  50. Abouelfetouh, A., Kondoh, T., Ehara, K., Kohumra, E. Morphological differentiation of bone marrow stromal cells into neuron-like cells after co-culture with hippocampal slice. Brain Res. 1029 (1), 114-119 (2004).
  51. Llado, J., Haenggeli, C., Maragakis, N., Snyder, E., Rothstein, J. Neural stem cells protect against glutamate-induced excitotoxicitiy and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol. Cell. Neurosci. 27 (3), 322-331 (2004).
  52. Fong, S. P., et al. Trophism of neural progenitor cells to embryonic stem cells: Neural induction and transplantation in a mouse ischemic stroke model. J. Neurosci. Res. 85 (9), 1851-1862 (2007).
  53. Gordon-Keylock, S. A., et al. Induction of hematopoietic differentiation of mouse embryonic stem cells by an AGM-derived stromal cell line is not further enhanced by overexpression of HOXB4. Stem Cells. 19 (11), 1687-1698 (2010).
  54. Yang, T., Tsang, K. S., Poon, W. S., Ng, H. K. Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontact induction and transplantation to a mouse ischemic stroke model. Cell transplant. 18 (4), 391-404 (2009).
  55. Kim, J. Y., et al. Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine. World J. Stem Cells. 4 (11), 110-116 (2012).
  56. Mauri, M., et al. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol. Cell Neurosci. 49 (4), 395-405 (2012).
  57. Ichikawa, J., et al. Increased crystal-cell interaction in vitro under co-culture of renal tubular cells and adipocytes by in vitro co-culture paracrine systems simulating metabolic syndrome. Urolithiasis. 42 (1), 17-28 (2014).
  58. Zuo, L., et al. A Paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment. J. Urol. 191 (6), 1906-1912 (2014).
  59. Fan, W., Zheng, J. J., McLaughlin, B. J. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell Dev. Biol. Anim. 38 (4), 228-234 (2002).
  60. Mierke, C. T., Ballmaier, M., Werner, U., Manns, M. P., Welte, K., Bischoff, S. C. Human endothelial cells regulate survival and proliferation of human mast cells. J. Exp. Med. 192 (6), 801-811 (2000).
  61. Beckner, M. E., Jagannathan, S., Peterson, V. A. Extracellular angio-associated migratory cell protein plays a positive role in angiogenesis and is regulated by astrocytes in coculture. Microvasc. Res. 63 (3), 259-269 (2002).
  62. Damon, D. H. VSM growth is stimulated in sympathetic neuron/VSM cocultures: role of TGF-beta2 and endothelin. Am. J. Physiol. Heart Circ. Physiol. 278 (2), H404-H411 (2000).
  63. Anna De Berardinis, M., Ciotti, M. T., Amadoro, G., Galli, C., Calissano, P. Transfer of the apoptotic message in sister cultures of cerebellar neurons. Neuroreport. 12 (10), 2137-2140 (2001).
  64. Lange-Sperandio, B., Fulda, S., Vandewalle, A., Chevalier, R. L. Macrophages induce apoptosis in proximal tubule cells. Pediatr. Nephrol. 18 (4), 335-341 (2003).
  65. Vjetrovic, J., Shankaranarayanan, P., Mendoza-Parra, M. A., Gronemeyer, H. Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. Aging Cell. 13 (3), 487-496 (2014).
  66. Fujiya, A., et al. The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring). 22 (2), 371-379 (2014).
  67. Suganami, T., Nishida, J., Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 25 (10), 2062-2068 (2005).
  68. Yoshida, A., Kitajiri, S., Nakagawa, T., Hashido, K., Inaoka, T., Ito, J. Adipose tissue-derived stromal cells protect hair cells from aminoglycoside. Laryngoscope. 121 (6), 1281-1286 (2011).
  69. May, L. A., et al. Inner ear supporting cells protect hair cells by secreting HSP70. J. Clin. Invest. 123 (8), 3577-3587 (2013).
  70. Jarosz, L. M., Deng, D. M., vander Mei, H. C., Crielaard, W., Krom, B. P. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell. 8 (11), 1658-1664 (2009).
  71. Dagenais, T. R., Giles, S. S., Aimanianda, V., Latgé, J. P., Hull, C. M., Keller, N. P. Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun. 78 (2), 823-829 (2010).
  72. Spiliotis, M., Lechner, S., Tappe, D., Scheller, C., Krohne, G., Brehm, K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int. J. Parasitol. 38 (8-9), 1025-1039 (2008).
  73. Scholzen, A., Mittag, D., Rogerson, S. J., Cooke, B. M., Plebanski, M. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathog. 5 (8), e1000543 (2009).
  74. Fedoroff, S., Richardson, A. Quantification of Cells in Culture. Protocols for Neural Cell Culture. , 333-335 (2001).
  75. Fedoroff, S., Richardson, A. Primary Cultures of Sympathetic Ganglia. Protocols for Neural Cell Culture. , 88-89 (2001).
  76. Kreutzberg, G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19 (8), 312-318 (1996).
  77. Hanisch, U. K., Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10 (11), 1387-1394 (2007).
  78. Davalos, D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8 (6), 752-758 (2005).
  79. Block, M. L., Zecca, L., Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8 (1), 57-69 (2007).
  80. Qureshi, S. T., Larivière, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., Malo, D. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615-625 (1999).
  81. Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K., Dower, S. K. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701-4710 (2002).
  82. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Bio. 4 (5), 278-286 (2008).
  83. Spencer, K. H., Kim, M. Y., Hughes, C. C., Hui, E. E. A screen for short-range paracrine interactions. Integr. Biol. (Camb). 6 (4), 382-387 (2014).
check_url/pt/54356?article_type=t

Play Video

Citar este artigo
Renaud, J., Martinoli, M. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact. J. Vis. Exp. (113), e54356, doi:10.3791/54356 (2016).

View Video