Summary

쥐의 신장에 생물의 혈관 배달

Published: September 01, 2016
doi:

Summary

신장 기능의 회복을위한 약물의 투여는 현지화 및 치료 화합물의 분포 컨트롤이 필요합니다. 여기, 우리는 구체적으로 쥐에 약물의 신장 내 전달을위한 간단한 방법을 설명합니다. 이 절차는 쉽고없이 사망률과 높은 재현성으로 수행 될 수있다.

Abstract

The renal microvascular compartment plays an important role in the progression of kidney disease and hypertension, leading to the development of End Stage Renal Disease with high risk of death for cardiovascular events. Moreover, recent clinical studies have shown that renovascular structure and function may have a great impact on functional renal recovery after surgery. Here, we describe a protocol for the delivery of drugs into the renal artery of rats. This procedure offers significant advantages over the frequently used systemic administration as it may allow a more localized therapeutic effect. In addition, the use of rodents in pharmacodynamic analysis of preclinical studies may be cost effective, paving the way for the design of translational experiments in larger animal models. Using this technique, infusion of rat recombinant Vascular Endothelial Growth Factor (VEGF) protein in rats has induced activation of VEGF signaling as shown by increased expression of FLK1, pAKT/AKT, pERK/ERK. In summary, we established a protocol for the intrarenal delivery of drugs in rats, which is simple and highly reproducible.

Introduction

The renal microvasculature is involved in a wide spectrum of kidney diseases. Depending on the pathophysiology of disease, the endothelial cells may present structural or functional impairment, which may play a pivotal role in propagating kidney damage by creating an ischemic microenvironment. This renal microvascular dysfunction may catalyze the onset of a progressive deterioration of renal function over time, leading to chronic kidney disease (CKD), end-stage renal disease, hypertension and cardiorenal syndrome. In fact, untreated hypertension may have implications in renal arterioles, causing nephrosclerosis or glomerulosclerosis with significant reduction in vascular volume fraction, increase in vascular resistance and development of tubulointerstitial fibrosis1.

Loss of renal microvasculature may be due to altered vascular homeostasis induced by local angiogenic/anti-angiogenic factors imbalance. This correlates with attenuated Vascular Endothelial Growth Factor (VEGF) signaling as well as elevated thrombospondin-12-4. Thus, using different animal models (mice, rats and pigs), the therapeutic effect of exogenous administration of VEGF has been recently investigated in some forms of renal disease, showing reduced interstitial fibrosis and stabilized renal and cardiac function3-5. This effect is likely due to actions of VEGF on endothelial cells of the microvascular bed and inflammatory monocyte phenotype switching6.

For some preclinical studies, the use of rodents, the most commonly used laboratory animals, provides a good animal model for high throughput studies due to relatively low costs and ease of handling. Moreover, the use of genetically-altered rats as models of human diseases, such as hypertension, has become more and more frequent in the scientific community. Therefore, the aim of this protocol is to describe a useful intrarenal VEGF delivery technique in rats that is easy to perform and highly reproducible. Moreover, the same method can be used to selectively deliver other drugs.

Protocol

실험은 250-300g 무게 암컷 흰쥐에서 수행 하였다. 실험실 동물의 관리 및 사용 (실험 동물 자원 연구소, 과학의 국립 아카데미, 베데스다, MD, USA)와 대한 설명서에 명시된 기준을 준수 모든 동물의 절차는 의학 기관 동물 관리의 메이요 클리닉 대학에 의해 승인되었다 및 사용위원회 (IACUC). 1. 준비 수술 전에 수술 도구를 압력솥. 다른 쥐의 여러 수술이 같은 날에 계획하는 경우, 각 동?…

Representative Results

우리는 재조합 쥐 VEGF (rrVEGF, 0.17 μg의 / kg, 5 μg의 / kg) 또는 PBS의 두 가지 용량을 주입. 동물은 VEGF 경로의 활성을 검사 8 시간 포스트 수술을 안락사시켰다. H & E 염색으로 도시 된 바와 같이, 제어부 (도 1b)에 비해 수술은 관류 신장 (도 1a)의 형태에 영향을 미치지 않았다. 제어 (그림 1D)에 비해 시리우스 레드 염색은…

Discussion

The increasing incidence of chronic kidney disease raises the need for novel therapeutic approaches that can promote functional kidney recovery7,8. Traditional therapies include the systemic administration of anti-inflammatory, anti-fibrotic drugs9. However, these strategies are frequently characterized by unwanted side effects due to off-target distribution of the injected drug. Therefore, in this manuscript, we describe a simple procedure for delivering drugs into the renal artery of rats. This pr…

Declarações

The authors have nothing to disclose.

Materials

Surgical Microscope Leica M125
Isoflurane 100 ml Cardinal Healthcare PI23238 Anesthetic
Buprenorphine HCL SR LAB 1mg/ml, 5 ml ZooPharm Pharmacy Buprenorphine narcotic analgesic formulated in a polymer that slows absorption extending duration of action (72 hours duration of activity).                                                        Liquid is viscous, warming to room temperature aids in drawing into syringe.                                                           Recommended dosage: 1-1.2 mg/kg SC. DO NOT DILUTE.
Puralube Vet Ophthalmic Ointment Dechra NDC17033-211-38 Sterile ocular lubricant
Lactated Ringer's Injection, USP, 250 mL VIAFLEX Plastic Container Baxter Healthcare Corp. NDC0338-0117-02 For body fluids replacement
Sol Povidone-Iodine  Swabstick, 3'  Cardinal Heatlhcare 23405-010B
Sterile cotton tipped applicators Kendall 8884541300
4-0 silk suture (without needle)  Cardinal Heatlhcare A183H
Vessel Clip, Straight, 0.75 x 4mm Jaw World Precision Instruments  501779-G
I.V. Catheter, Straight Hub, Radiopaque, 24g x 3/4", FEP Polymer Jelco 4053
Phosphate Buffered Saline Life Technologies 10010023
SURGIFOAM Absorbable Gelatin Sponge Cardinal Healthcare 179082
4-0 VICRYL PLUS (ANTIBACTERIAL) VIOLET 27" RB-1 TAPER Ethicon VCP304H For muscle layer suturing
4-0 VICRYL PLUS (ANTIBACTERIAL) UNDYED 18" PC-3 CUTTING Ethicon VCP845G For skin layer suturing
Triple antibiotic ointment Actavis NDC0472-0179-56 For topical use on the site of the incision
Recombinant Rat VEGF 164 Protein R&D Sytems 564-RV
Rabbit monoclonal VEGFA Abcam ab46154
Rabbit monoclonal FLK1 Cell Signaling 9698
Rabbit monoclonal AKT Cell Signaling 4691
Rabbit monoclonal phosphoAKT (Ser 473) Cell Signaling 4060
Rabbit monoclonal p44/42 MAPK (ERK1/2) Cell Signaling 4695
Rabbit monoclonal phospho p44/42 MAPK (Thr202 and Tyr 204) Cell Signaling 4370

Referências

  1. Dejani, H., Eisen, T. D., Finkelstein, F. O. Revascularization of renal artery stenosis in patients with renal insufficiency. Am. J. Kidney Dis. 36 (4), 752-758 (2000).
  2. Kang, D. H., et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J. Am. Soc. Nephrol. 12 (7), 1434-1447 (2001).
  3. Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F., Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 12 (7), 1448-1457 (2001).
  4. Kang, D. H., et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13 (3), 806-816 (2002).
  5. Chade, A. R., Kelsen, S. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach. Am. J. Physiol.- Renal Physiol. 302 (10), F1342-F1350 (2012).
  6. Eirin, A., et al. Changes in Glomerular Filtration Rate After Renal Revascularization Correlate With Microvascular Hemodynamics and Inflammation in Swine Renal Artery Stenosis. Circ.-Cardiovasc. Interv. 5 (5), 720-728 (2012).
  7. Chade, A. R. Distinct Renal Injury in Early Atherosclerosis and Renovascular Disease. Circulation. 106 (9), 1165-1171 (2002).
  8. Seddon, M., Saw, J. Atherosclerotic renal artery stenosis: review of pathophysiology, clinical trial evidence, and management strategies. Can. J. Cardiol. 27 (4), 468-480 (2011).
  9. Lao, D., Parasher, P. S., Cho, K. C., Yeghiazarians, Y. Atherosclerotic renal artery stenosis–diagnosis and treatment. Mayo Clin Proc. 86 (7), 649-657 (2011).
  10. Sharfuddin, A. A., Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189-200 (2011).
  11. Noiri, E., et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol.- Renal Physiol. 281 (5), F948-F957 (2001).
  12. Koesters, R., et al. Tubular Overexpression of Transforming Growth Factor-Î1 Induces Autophagy and Fibrosis but Not Mesenchymal Transition of Renal Epithelial Cells. Am. J. Pathol. 177 (2), 632-643 (2010).
  13. Shanley, P. F., Rosen, M. D., Brezis, M., Silva, P., Epstein, F. H., Rosen, S. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am. J. Pathol. 122 (3), 462-468 (1986).
check_url/pt/54418?article_type=t

Play Video

Citar este artigo
Franchi, F., Zhu, X. Y., Witt, T. A., Lerman, L. O., Rodriguez-Porcel, M. Intravascular Delivery of Biologics to the Rat Kidney. J. Vis. Exp. (115), e54418, doi:10.3791/54418 (2016).

View Video