Summary

보호 효능 및 폐 면역 반응은 마우스에 피하 및 비강 BCG 관리에 따라

Published: September 19, 2016
doi:

Summary

We herein detail the methodology followed to compare protective efficacy and lung immune response induced by intranasal and subcutaneous immunization with BCG in mouse model. Our results show the benefits of pulmonary vaccination and suggest a role for IL17-mediated response in vaccine-induced protection.

Abstract

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.

Introduction

결핵 (TB)는 TB 놀라운 세계 보건 문제 수 있습니다 세계에서 HIV보다 더 많은 관련 사망의 원인이되는 주요 감염 질환 중 하나 다 약제 내성 균주의 증가 증가와 결합이다. 새로운 진단 도구,보다 효과적이고 독성이 적은 약물, 새로운 안전하고 효과적인 결핵 백신은 특히 개발 도상국에서, 긴급한 필요하다.

감쇠 Bacille 칼 메트 – GUERIN은 (BCG)은 현재 전 세계적으로 1970 년대 이후 출생시 피내 투여 된 TB, 대한 전용 허가 백신 살고있다. BCG는 아이들의 질환 (수막염 및 속 립성 결핵)의 심한 형태의 예방에 효과적인 것으로 간주되지만, 질병 전파 (2)의 책임 폐결핵에 대한 일관성 효과를 보여 주었다.

TB 감염의 자연 경로를 모방 폐 예방 접종은 로컬 호스트 면역 반응을 프라이밍위한 매력적인 접근 방식을 나타냅니다에스. 피하 또는 피내 경로 3-6에 비해 이와 관련하여, 다른 관련 TB의 동물 모델에서 다양한 전임상 작품 폐 면역화 다음 큰 백신 효능을 보여 주었다. 그럼에도 불구하고, 폐 예방 접종에 의해 유발 보호 메커니즘은 잘 이해되지 않습니다. 지난 몇 년 동안, 여러 작품 IL17 점막 백신에 의한 예방 효과에 대한 결핍 된 마우스 모델에서와 같이, TB-특정 점막 면역 반응의 중요한 요소로 IL17 중재 응답으로 지적은 7,8를 손상된다.

최근에 우리는 BCG 관리는 DBA / 2 마우스, 피하 BCG 예방 접종 9 후 보호의 부족을 특징으로하는 마우스 변형을 보호 비강 처음으로 보여 주었다. 이러한 결과는 호흡기 결핵 예방 접종은 피내 BCG가 pulmon에 대한 효과로 간주됩니다 발병 국가에서 TB의 비율을 감소 시키는데 더 효과적 일 수 있다고 제안진 TB.

Protocol

모든 마우스는 통제 된 조건 하에서 유지와 질병의 징후가 관찰되었다. 실험 연구는 실험 동물의 보호와 관할 지역 윤리위원회의 승인과 유럽 국가 지침과 일치 하였다. BCG 덴마크어의 정량화 글리세롤 주식 및 결핵균의 H37Rv 1. 준비 주 : 설명 된 모든 프로토콜은 BSL3 조건 하에서 수행 하였다. BCG 덴마크어 또는 H37Rv 균주의 해?…

Representative Results

피하 및 비강 :이 작품은 BCG의 관리의 두 경로의 비교에 대해 설명합니다. 피하 전세계 BCG 현재 임상 경로 인 피내, 비슷하다. 백신의 비내 경로 M.의 감염 천연 경로를 모방하는 것을 목표 목적으로 결핵은 폐에 직접 병원체의 주요 표적 장기를 면역 반응을 유도한다. 그림 1은 다음 워크 플로를 설명?…

Discussion

Although current vaccine against tuberculosis, BCG, is the most widely administered vaccine in history, tuberculosis remains one of the leading causes of death and morbidity from infectious diseases worldwide. This paradox is explained by the lack of protection of this vaccine against pulmonary tuberculosis, the responsible form of transmission. New vaccination approaches effective against pulmonary forms of the disease are urgently needed, as they would have the greatest impact on disease transmission globally.

<p c…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by “Spanish Ministry of Economy and Competitiveness” [grant number BIO2014-5258P], “European Commission” by the H2020 programs [grant numbers TBVAC2020 643381].

Materials

Middlebrook 7H9 broth BD 271310
Middlebrook ADC Enrichment BD 211887
Tween 80 Scharlau TW00800250
3-mm diameter Glass Beads Scharlau 038-138003
Middlebrook 7H10 Agar BD 262710
1-ml syringe 26GA 0.45×10 mm BD 301358
GentleMACS dissociator Miltenyi Biotec 130-093-235
C tubes Miltenyi Biotec 130-093-237
M tubes Miltenyi Biotec 130-093-236
Collagenase D Roche 11088882001
DNaseI Applichem A3778,0100
Falcon 70µm Cell Strainer Corning 352350
RPMI 1640 Sigma R0883
Red Blood Cell Lysing Buffer Sigma R7757
GlutaMAX Supplement Gibco 35050-061 100X concentrated
Penicillin-Streptomycin Solution Sigma P4333 100X concentrated
Fetal Calf Serum Biological Industries 04-001-1A
2-Mercaptoethanol Sigma M3148-25ML
Scepter 2.0 Handheld Automated Cell Counter Millipore PHCC20040
Scepter Cell Counter Sensors, 40 µm Millipore PHCC40050
Mycobacterium Tuberculosis – Tuberculin PPD Statens Serum Institut (SSI) 2390
Mouse IFN-γ ELISA development kit  Mabtech 3321-1H
Mouse IL17A ELISA development kit  Mabtech 3521-1H
Brefeldin A Sigma B7651
FITC Rat Anti-Mouse CD4 BD 553047
BD Cytofix/Cytoperm Kit BD 555028
APC-Cy7 Rat Anti-mouse IL-17A BD 560821
APC Mouse Anti-mouse IFNg BD 554413
LACHRYMAL OLIVE LUER LOCK 0.60 x 30 mm. 23G x 1 1/4” UNIMED 27.134 Used as trachea cannula for BAL
high-protein binding polystyrene flat-bottom 96-well plates MAXISORP NUNC 430341
Albumin, from bovine serum Sigma A4503
Goat Anti-Mouse IgA (α-chain specific)−Peroxidase antibody Sigma A4789
3,3′,5,5′-Tetramethylbenzidine (TMB)  Sigma T0440
MyTaq DNA Polymerase Bioline BIO-21107 The kit Includes Buffer 5x

Referências

  1. Zumla, A., et al. The WHO 2014 global tuberculosis report–further to go. Lancet Glob Health. 3 (1), e10-e12 (2015).
  2. Mangtani, P., et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 58 (4), 470-480 (2014).
  3. Aguilo, N., et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol. 21 (4), 594-597 (2014).
  4. Chen, L., Wang, J., Zganiacz, A., Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 72 (1), 238-246 (2004).
  5. Giri, P. K., Verma, I., Khuller, G. K. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect. 53 (5), 350-356 (2006).
  6. Lagranderie, M., et al. BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis. 74 (1), 38-46 (1993).
  7. Gopal, R., et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6 (5), 972-984 (2013).
  8. Khader, S. A., et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8 (4), 369-377 (2007).
  9. Aguilo, N., et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis. , (2015).
  10. Middlebrook, G., Cohn, M. L. Bacteriology of tuberculosis: laboratory methods. Am J Public Health Nations Health. 48 (7), 844-853 (1958).
  11. Brosch, R., et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 99 (6), 3684-3689 (2002).
  12. Kaushal, D., et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 6, 8533 (2015).
  13. Lochhead, J. J., Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 64 (7), 614-628 (2012).
  14. Lochhead, J. J., Wolak, D. J., Pizzo, M. E., Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 35 (3), 371-381 (2015).
  15. Griffiths, K. L., et al. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS One. 8 (10), e78312 (2013).
  16. Hirota, K., et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 14 (4), 372-379 (2013).
  17. Jaffar, Z., Ferrini, M. E., Herritt, L. A., Roberts, K. Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol. 182 (8), 4507-4511 (2009).
check_url/pt/54440?article_type=t

Play Video

Citar este artigo
Uranga, S., Marinova, D., Martin, C., Aguilo, N. Protective Efficacy and Pulmonary Immune Response Following Subcutaneous and Intranasal BCG Administration in Mice. J. Vis. Exp. (115), e54440, doi:10.3791/54440 (2016).

View Video