Summary

À haut débit, multi-images Cryohistology de minéralisés Tissues

Published: September 14, 2016
doi:

Summary

In this manuscript, we present a high-throughput, semi-automated cryohistology platform to produce aligned composite images of multiple response measures from several rounds of fluorescent imaging on frozen sections of mineralized tissues.

Abstract

There is an increasing need for efficient phenotyping and histopathology of a variety of tissues. This phenotyping need is evident with the ambitious projects to disrupt every gene in the mouse genome. The research community needs rapid and inexpensive means to phenotype tissues via histology. Histological analyses of skeletal tissues are often time consuming and semi-quantitative at best, regularly requiring subjective interpretation of slides from trained individuals. Here, we present a cryohistological paradigm for efficient and inexpensive phenotyping of mineralized tissues. First, we present a novel method of tape-stabilized cryosectioning that preserves the morphology of mineralized tissues. These sections are then adhered rigidly to glass slides and imaged repeatedly over several rounds of staining. The resultant images are then aligned either manually or via computer software to yield composite stacks of several layered images. The protocol allows for co-localization of numerous molecular signals to specific cells within a given section. In addition, these fluorescent signals can be quantified objectively via computer software. This protocol overcomes many of the shortcomings associated with histology of mineralized tissues and can serve as a platform for high-throughput, high-content phenotyping of musculoskeletal tissues moving forward.

Introduction

La recherche biologique nécessite souvent phénotypage efficace, qui est souvent associée à une sorte d'analyse histologique 1-3. Ce besoin est encore plus évident avec les projets ambitieux de perturber chaque gène dans le génome de la souris 4. Ces analyses histologiques peuvent varier d'évaluer la morphologie des cellules et / ou des caractéristiques anatomiques de l'expression de la cartographie de gènes ou de protéines spécifiques aux cellules individuelles. En fait, l'un des apports fondamentaux de l'histologie au domaine de la génomique est la possibilité d'associer un signal moléculaire spécifique à une région ou d'une cellule de type spécifique.

Les méthodes traditionnelles de l'histologie, en particulier pour les tissus musculo-squelettiques, sont souvent longue et laborieuse, nécessitant parfois des semaines pour fixer, détartrer, section, tache, et l'image de l'échantillon, puis d'analyser les images via l'interprétation humaine. L' analyse des signaux moléculaires multiples, que ce soit par immunohistochimie, hybridizat in situion, ou des colorations spéciales, nécessite de multiples sections et même des échantillons multiples pour effectuer de manière appropriée. En outre, ces réponses multiples ne peuvent pas être co-localisés à la même cellule et parfois ne peuvent pas être co-localisée à une région spécifique dans un échantillon donné. Comme le domaine de la génomique et épigénomique se déplace dans l'ère numérique, le champ histologique doit également suivre pour fournir efficace, à haut débit, et l'analyse automatisée d'une variété de signaux moléculaires dans une coupe histologique unique.

En effet, il existe une demande pour une amélioration des techniques histologiques qui peuvent associer des signaux moléculaires multiples à des cellules spécifiques dans un échantillon donné. Récemment, nous avons publié un nouveau haut-débit méthode cryohistological pour évaluer plusieurs mesures d'intervention au sein d' une section donnée de tissu minéralisé 5-14. Le procédé consiste à stabiliser la cryosection avec cryotape congelé, faire adhérer l'article collé de façon rigide sur une lame de microscope, etla réalisation de plusieurs cycles de coloration et de l'imagerie sur chaque section. Ces séries d'images sont ensuite alignées manuellement ou grâce à l' automatisation de l' ordinateur avant l'analyse de l' image (figure 1). Ici, nous présentons des protocoles détaillés de ce processus et de fournir des exemples où ces techniques ont amélioré notre compréhension des différents processus biologiques.

Protocol

L'Université du Connecticut Health Center protection des animaux et l'utilisation comité a approuvé toutes les procédures animales. 1. Fixation and Embedding Euthanasier l'animal via CO 2 asphyxie ou d' autres méthodes approuvées. Récolter le tissu d'intérêt (par exemple, des membres, des vertèbres, etc.) et dans 10% du formol tamponné neutre à 4 ° C jusqu'à ce que fixé correctement. Faites attention à maintenir…

Representative Results

Un flux de travail général pour le haut-débit, multi-images Cryohistology La figure 1 représente le processus général utilisé pour cette technique. Il comprend plusieurs étapes de fixation à travers plusieurs cycles de l'imagerie et enfin l'image d'alignement / analyse. Le processus peut prendre aussi peu que d'une semaine pour aller de l'échantil…

Discussion

Ici, nous avons présenté un protocole de cryohistology détaillé pour co-localiser et quantifier plusieurs mesures biologiques en alignant les images provenant de plusieurs cycles de coloration / imagerie sur une seule section. La méthode décrite à l' aide de la cryotape est particulièrement utile car il conserve la morphologie des tissus difficiles à la section (par exemple, os minéralisé et le cartilage). En outre, le tissu sectionné adhère fermement à la lame de verre, ce qui permet plusieur…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the following funding sources: NIH R01-AR063702, R21-AR064941, K99-AR067283, and T90-DE021989.

Materials

10% neutral buffered formalin Sigma Aldrich HT501128-4L Multiple suppliers available. Toxic. Can be substituted with 4% paraformaldehyde.
Sucrose Sigma Aldrich S9378 Multiple suppliers available.
PBS Sigma Aldrich P5368 Multiple suppliers available.
Cryomolds Fisher Scientific Fisherbrand #22-363-554 Different sizes can be used depending on tissue
Cryomatrix Thermo Scientific 6769006 Can be substitituted with other cryomatrices. However, PVA/PEG-based resins have worked best in our hands.
2-methyl-butane Sigma Aldrich M32631 Multiple suppliers available.
Cryostat Leica Biosystems 3050s Can be substituted with other brands/models.
Specimen disc Leica Biosystems 14037008587 Can be substituted with other brands/models.
Cryostat blades Thermo Scientific 3051835 Can be substituted with other brands/models.
Cryotape Section Lab Cryofilm 2C
Roller Electron Microscopy Sciences 62800-46 Can be substituted with other brands/models.
Plastic microscope slides Electron Microscopy Sciences 71890-01 Can be substituted with other brands/models.
Glass microscope slides Thermo Scientific 3051 Can be substituted with other brands/models.
Norland Optical Adhesive, 61 Norland Optical Norland Optical Adhesive, 61
UV Black Light General Electric F15T8-BLB
Glacial acetic acid Sigma Aldrich ARK2183 Multiple suppliers available.
Chitosan Sigma Aldrich C3646 Multiple suppliers available.
InSpeck red microscopheres ThermoFisher Scientific I-14787
InSpeck green microspheres ThermoFisher Scientific I-14785
Calcein Blue Sigma Aldrich M1255 Multiple suppliers available.
Calcein Sigma Aldrich C0875  Multiple suppliers available.
Alizarin complexone Sigma Aldrich A3882  Multiple suppliers available.
Demeclocycline Sigma Aldrich D6140  Multiple suppliers available.
NaHCO3 Sigma Aldrich S5761 Multiple suppliers available.
Glycerol Sigma Aldrich G5516 Multiple suppliers available.
ELF 97 yellow fluorescent acid phosphatase substrate ThermoFisher Scientific E-6588
DAPI ThermoFisher Scientific 62247 Multiple suppliers available. Can be substituted with Hoechst 33342 or other nuclear dyes.
TO-PRO-3 (Cy5 nuclear counterstain) ThermoFisher Scientific T3605
Propidium Iodide ThermoFisher Scientific R37108 Multiple suppliers available.
Sodium acetate anhydrous Sigma Aldrich S2889 Multiple suppliers available.
sodium tartrate dibasic dihydrate  Sigma Aldrich T6521 Multiple suppliers available.
Sodium nitrite Sigma Aldrich S2252 Multiple suppliers available.
Tris Sigma Aldrich 15504 Multiple suppliers available.
MgCl2 hexahydrate Sigma Aldrich M9272 Multiple suppliers available.
NaCl Sigma Aldrich S7653 Multiple suppliers available.
Fast Red TR Salt Sigma Aldrich F8764 Multiple suppliers available. Can also be substituted with other substrate kits such as Vector Blue (Vector Laboratories, Cat# SK-5300)
Naphthol AS-MX  Sigma Aldrich N4875 Multiple suppliers available.
N,N dimethylformamide Sigma Aldrich D158550 Multiple suppliers available.
Toluidine blue O Sigma Aldrich T3260 Multiple suppliers available.
Axio Scan.Z1 Carl Zeiss AG Axio Scan.Z1 Other linear or tiled scanners may also be used.
DAPI Filter Set Chroma Technology Corp. 49000
CFP Filter Set Chroma Technology Corp. 49001
GFP Filter Set Chroma Technology Corp. 49020
YFP Filter Set Chroma Technology Corp. 49003
Custom yellow (ELF 97) Filter Set Chroma Technology Corp. custom; HQ409sp, HQ555/30m, 425dxcr
TRITC Filter Set Chroma Technology Corp. 49004
Cy5 Filter Set Chroma Technology Corp. 49009
CryoJane Tape Transfer System Electron Microscopy Sciences 62800-10 Multiple suppliers available.
CryoJane Tape Windows Electron Microscopy Sciences 62800-72 Multiple suppliers available.
CryoJane Adhesive Slides Electron Microscopy Sciences 62800-4X Multiple suppliers available.

Referências

  1. Schofield, P. N., Vogel, P., Gkoutos, G. V., Sundberg, J. P. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech. 5 (1), 19-25 (2012).
  2. Adissu, H. A., et al. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen. Disease Models and Mechanisms. 7 (5), 515-524 (2014).
  3. Johnson, J. T., et al. Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet. 2 (4), e61 (2006).
  4. Ayadi, A., et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm.Genome. 23 (9-10), 600-610 (2012).
  5. Utreja, A., et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 24 (2), 335-344 (2016).
  6. Dyment, N. A., et al. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev.Biol. 405 (1), 96-107 (2015).
  7. Lalley, A. L., et al. Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J.Orthop.Res. 33 (11), 1693-1703 (2015).
  8. Breidenbach, A. P., et al. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis. J.Orthop.Res. 33 (8), 1142-1151 (2015).
  9. Ushiku, C., Adams, D., Jiang, X., Wang, L., Rowe, D. Long Bone Fracture Repair in Mice Harboring GFP Reporters for Cells within the Osteoblastic Lineage. J.Orthop.Res. 28 (10), 1338-1347 (2010).
  10. Matthews, B. G., et al. Analysis of asMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J.Bone Miner.Res. 29 (5), 1283-1294 (2014).
  11. Dyment, N. A., Hagiwara, Y., Jiang, X., Huang, J., Adams, D. J., Rowe, D. W. Response of knee fibrocartilage to joint destabilization. Osteoarthritis Cartilage. 23 (6), 996-1006 (2015).
  12. Grcevic, D., et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 30 (2), 187-196 (2012).
  13. Hong, S. H., Jiang, X., Chen, L., Josh, P., Shin, D. G., Rowe, D. Computer-Automated Static, Dynamic and Cellular Bone Histomorphometry. J Tissue Sci Eng. Suppl 1, 004 (2012).
  14. Matthews, B. G., Torreggiani, E., Roeder, E., Matic, I., Grcevic, D., Kalajzic, I. Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells. Bone. 84, 69-77 (2016).
  15. Hagiwara, Y., et al. Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair. J.Orthop.Res. 33 (7), 948-956 (2015).
  16. Jiang, X., et al. Histological analysis of GFP expression in murine bone. J.Histochem.Cytochem. 53 (5), 593-602 (2005).
  17. Nissanov, J., Bertrand, L., Tretiak, O. Cryosectioning distortion reduction using tape support. Microsc.Res.Tech. 53 (3), 239-240 (2001).
  18. Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch.Histol.Cytol. 66 (2), 123-143 (2003).
check_url/pt/54468?article_type=t

Play Video

Citar este artigo
Dyment, N. A., Jiang, X., Chen, L., Hong, S., Adams, D. J., Ackert-Bicknell, C., Shin, D., Rowe, D. W. High-Throughput, Multi-Image Cryohistology of Mineralized Tissues. J. Vis. Exp. (115), e54468, doi:10.3791/54468 (2016).

View Video