Summary

Die Herstellung von Weißlichtemittierenden elektrochemischen Zellen, die mit stabile Emission von Exciplexe

Published: November 15, 2016
doi:

Summary

The authors present a method for fabricating stable white-light-emitting electrochemical cells utilizing emission from exciplexes formed between a blue-emitting fluorene polymer and aromatic amines.

Abstract

Die Autoren stellen einen Ansatz zur Herstellung von stabilen Weißlichtemission aus Polymer lichtemittierenden elektrochemischen Zellen (Plecs) mit einer aktiven Schicht, die blau fluoreszierende Poly (9,9-Di-n-dodecylfluorenyl-2,7-diyl) besteht aus ( PFD) und π-konjugiertes Triphenylamin Molekülen. Diese weiße Lichtemission stammt aus Exciplexen zwischen PFD und Aminen in elektronisch angeregten Zuständen gebildet. Vorrichtung enthält PFD, 4,4 ', 4' '- Tris [2-Naphthyl (phenyl) amino] triphenylamin (2-TNATA), Poly (ethylenoxid) und K 2 CF 3 SO 3 zeigte weiße Lichtemission mit der Commission Internationale de l'éclairage (CIE) -Koordinaten von (0,33, 0,43) und einem Farbwiedergabeindex (CRI) von Ra = 73 bei einer angelegten Spannung von 3,5 V. Konstantspannungsmessungen zeigten, dass die CIE-Koordinaten von (0,27, 0,37), Ra von 67, und die Emissionsfarbe beobachtet unmittelbar nach Anlegen einer Spannung von 5 V waren fast unverändert und stabil, nachdem300 sec.

Introduction

Research and development of polymer light-emitting electrochemical cells (PLECs) have expanded in recent years.1-15 PLECs are similar to organic light-emitting diodes (OLEDs) in that both are surface emitting organic devices and are expected to find their way into future lighting applications. OLEDs are already on the market, but the cost is still high, one reason being that OLEDs need a complicated device structure with multiple layers. In contrast, PLECs have a very simple device structure which consists of a single active layer (emitting layer) between a pair of electrodes. This means that PLECs are suited to mass production processes such as roll-to-roll printing and coating.

A PLEC has an active layer consisting of a fluorescent π-conjugated polymer (FCP). The FCP can be electrochemically doped with a polymer electrolyte (a mixture of an ion conducting polymer and a salt). The FCP is p-doped on the anode side and n-doped on the cathode side during operation, and generates excitons which emit light between the p- and n-doped regions. Therefore, the emission color reflects the exciton emission (=fluorescence) wavelength of the FCP.

Stable white light emission is important for lighting applications, and color mixing techniques which employ two or more emitters have been widely used to achieve this.10-14 Recently, we presented a different approach for obtaining stable white light emission, using an active layer which contains blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated aromatic amines15. This white light emission comes from exciplexes formed between PFD and amine molecules in excited states. Exciplex emission has a broader spectrum compared to the exciton emission from the PDF and/or amines, which gives it a color close to that of natural light. This translates to a higher color rendering index (CRI), which is preferable for lighting applications.

In this article, the authors describe the procedure used to fabricate the exciplex based LECs and show the stability of their white light emission.

Protocol

1. Herstellung von Aktivschicht Lösungen Die aktive Schicht Lösung für die Amin – dotierten PFD Geräte HINWEIS: Der PFD, 4,4 ', 4' '- Tris [2-Naphthyl (phenyl) amino] triphenylamin (2-TNATA), 9,9-Dimethyl- N, -di' N (1-Naphthyl) – N , N '-Diphenyl-9H-fluoren-2,7-diamin (DMFL-NPB), Poly (ethylenoxid) (PEO) wurden wie erhalten verwendet. Das Kalium – trifluormethansulfonat (K 2 CF 3 SO 3) wurde 1 …

Representative Results

Die Elektrolumineszenz (EL) -Spektren wurden verwendet , um die CIE – Koordinaten und CRI – Werte (2, 4, 5) zu berechnen. Fotografische Bilder der emittierenden Vorrichtungen wurden gesammelt , um die Weiße der Emission (Figur 3) zu überprüfen. Die EL – Spektren der Amin dotierten PFD – Geräten und dem undotierten PFD Vorrichtung sind in Abbildung 2 dargestellt. Die undoti…

Discussion

Der LEC hat eine aktive Schicht hydrophobe PFD und aromatische Amine enthält, und hydrophile Polyethylenoxid und KCF 3 SO 3. Da diese Materialien haben sehr unterschiedliche Löslichkeiten, eine sorgfältige Vorbereitung der Spinbeschichtungslösung ist entscheidend unvollständig Solvatation zu vermeiden. Jeder muss zunächst getrennt und vollständig in Lösemittel mit ausreichender Solvatisierungsfähigkeit aufgelöst werden, dann werden die Lösungen miteinander vermischt werden, um eine einhe…

Declarações

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde zum Teil durch einen Zuschuss-in-Aid for Scientific Research (Nr 24225003) unterstützt. Diese Arbeit wurde von der JX Nippon Oil & Energy Corporation unterstützt.

Materials

Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) Aldrich 571660
4,4’,4’’-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) Aldrich 768669
9,9-Dimethyl-N,N’-di(1-naphthyl)-N,N’-diphenyl-9H-fluorene-2,7-diamine (DMFL-NPB) Aldrich
Poly(ethylene oxide) (PEO) Aldrich 182028
Potassium tirifluoromethansulfonate (KCF3SO3) Aldrich 422843 dried under vacuum at 200 °C for 2 hr prior to use
Chloroform Kanto Chemical Co. 08097-25 dehydrated
Cyclohexanone Kanto Chemical Co. 07555-00
SCAT 20-X (detergent) Daiichi Kogyo Seiyaku diluted with water
Acetone Kanto Chemical Co. 01866-25 Electronic grage
2-propanol Kanto Chemical Co. 32439-75 Electronic grage
13mm GD/X Disposable Filter Device PVDF Filter Media, Polypropylene Housing Whatman 6872-1304
UV/O3 Treating Unit SEN Lights Co.  SSP16-110
Spectral Photo Detector Otsuka Electronics MCPD 9800
Voltage Current Source Monitor  ADCMT 6241A 
Evaporation Mask  Tokyo Process Service Co., Ltd. NA The evaporation mask was wet-etched to create openings for patterned deposition of aluminum. The size of the mask is 100 mm x 100 mm x 0.2 mm-thick.

Referências

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A. J. Polymer light-emitting electrochemical cells. Science. 269 (5227), 1086-1088 (1995).
  2. Sun, Q., Li, Y., Pei, Q. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3 (2), 211-224 (2007).
  3. Meier, S. B., et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today. 17 (5), 217-223 (2014).
  4. Edman, L., et al. Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance. J. Appl. Phys. 98 (4), 044502 (2005).
  5. Fang, J., Matyba, P., Edman, L. The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 19 (16), 2671-2676 (2009).
  6. Yu, Z., et al. Stabilizing the Dynamic p− i− n Junction in Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. Lett. 2 (5), 367-372 (2011).
  7. Sandström, A., Dam, H. F., Krebs, F. C., Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1002 (2012).
  8. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  9. Yang, Y., Pei, Q. Efficient blue-green and white light-emitting electrochemical cells based on poly 9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl. J. Appl. Phys. 81 (7), 3294-3298 (1997).
  10. Tang, S., Buchholz, H. A., Edman, L. White Light from a Light-Emitting Electrochemical Cell: Controlling the Energy-Transfer in a Conjugated Polymer/Triplet-Emitter Blend. ACS Appl. Mater. Iterfaces. 7 (46), 25955-25960 (2015).
  11. Nishikitani, Y., Takizawa, D., Nishide, H., Uchida, S., Nishimura, S. White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent π-Conjugated Polymers Based on Concepts of Band-Structure Engineering. J. Phys. Chem. C. 119 (52), 28701-28710 (2015).
  12. Sun, M., Zhong, C., Li, F., Cao, Y., Pei, Q. A Fluorene− Oxadiazole Copolymer for White Light-Emitting Electrochemical Cells. Macromolecules. 43 (4), 1714-1718 (2010).
  13. Tang, S., Pan, J., Buchholz, H., Edman, L. White Light-Emitting Electrochemical Cell. ACS Appl. Mater. Interfaces. 3 (9), 3384-3388 (2011).
  14. Tang, S., Pan, J., Buchholz, H. A., Edman, L. White light from a single-emitter light-emitting electrochemical cell. J. Am. Chem. Soc. 135 (9), 3647-3652 (2013).
  15. Nishikitani, Y., et al. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules. J. Appl. Phys. 118 (22), 225501 (2015).
  16. Tang, S., Mindemark, J., Araujo, C. M. G., Brandell, D., Edman, L. Identifying Key Properties of Electrolytes for Light-Emitting Electrochemical Cells. Chem. Mater. 26 (17), 5083-5088 (2014).
check_url/pt/54628?article_type=t

Play Video

Citar este artigo
Uchida, S., Takizawa, D., Ikeda, S., Takeuchi, H., Nishimura, S., Nishide, H., Nishikitani, Y. Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes. J. Vis. Exp. (117), e54628, doi:10.3791/54628 (2016).

View Video