Summary

Mesure de la rigidité de<em> Ex Vivo</em> Souris aortes Utiliser Atomic Force Microscopy

Published: October 19, 2016
doi:

Summary

We present detailed protocols for isolation of aortas from mouse and measurement of their elastic modulus using atomic force microscopy.

Abstract

raidissement artérielle est un facteur de risque significatif et biomarqueur pour une maladie cardiovasculaire et une caractéristique de vieillissement. La microscopie à force atomique (AFM) est un outil d' analyse polyvalent pour la caractérisation des propriétés mécaniques viscoélastiques pour une variété de matériaux allant du disque (plastique, verre, métal, etc.) des surfaces à des cellules sur tout substrat. Il a été largement utilisé pour mesurer la rigidité des cellules, mais moins fréquemment utilisé pour mesurer la rigidité des aortes. Dans cet article, nous allons décrire les procédures d'utilisation de l' AFM en mode contact pour mesurer l'ex vivo module d' élasticité des artères de souris non chargées. Nous décrivons notre procédure d'isolement des aortes de souris, puis des informations détaillées pour l'analyse de l'AFM. Cela inclut des instructions étape par étape pour l'alignement du faisceau laser, l'étalonnage de la constante du ressort et de la sensibilité de déviation de la sonde AFM, et l'acquisition de courbes de force. Nous fournissons également un protocole détaillé pour analy de donnéessis des courbes de force.

Introduction

The biomechanical properties of arteries are a critical determinant in cardiovascular disease (CVD) and aging. Arterial stiffness, a major cholesterol independent risk factor and an indicator for the progression of CVD, increases with vascular injury, atherosclerosis, age, and diabetes1-8. Arterial wall stiffening is associated with increased dedifferentiation, migration, and proliferation of vascular smooth muscle cells9-12. In addition, increased arterial stiffness has been linked to enhanced macrophage adhesion1, endothelial permeability and leukocyte transmigration13, and vessel wall remodeling14,15. Thus, therapies that could prevent arterial stiffening in CVD or aging might complement currently available pharmacological interventions that treat CVD by reducing high blood cholesterol.

AFM is a powerful analytical tool used for various physical and biological applications. AFM is increasingly used to obtain the high-resolution images and characterize the biomechanical properties of soft biological samples such as tissues and cells1,2,10,16,17 with a great degree of accuracy at nanoscale levels. A major advantage of AFM is the fact that it can be used with living cells.

This paper describes our method for measuring the elastic modulus of mouse arteries ex vivo using AFM. The described method shows how we 1) properly isolate mouse arteries (descending aorta and aortic arch) and 2) measure the elastic modulus of these tissues by AFM. Measurements of unloaded elastic moduli in arteries can help to elucidate changes in the extracellular matrix (ECM) that occur in response to vascular injury, CVD, and aging.

Protocol

le travail des animaux dans cette étude a été approuvée par les soins et l'utilisation des comités institutionnels animales de l'Université de Pennsylvanie. Les méthodes ont été réalisées conformément aux lignes directrices approuvées. 1. Préparation de la souris et l'isolement de l'aorte Anesthésier une souris avec de la kétamine (80 – 100 mg / kg), de xylazine (8 – 10 mg / kg) et d'acépromazine (1 – 2 mg / kg) par voie intrapéritonéale. Con…

Representative Results

La figure 5A montre une image de contraste de phase de la descente (thoracique) aorte d'un enfant de 6 mois, mâle C57BL / 6 de souris. Le cantilever AFM est en place directement au- dessus du tissu et prêt pour l' indentation. Figures 5B et 5C montrent des courbes de force représentatives obtenues par AFM indentation en mode contact. Lignes vertes représentées sur les figures 5B et 5C représentent les meilleures cour…

Discussion

AFM indentation peut être utilisée pour caractériser la rigidité (module d'élasticité), des cellules et des tissus. Dans cet article, nous fournissons des protocoles étape par étape détaillées pour isoler l'aorte descendante et l' arc aortique chez la souris et déterminer les modules élastiques de ces régions artérielles ex vivo. Nous résumons maintenant et discuter les problèmes techniques et les limites de la méthode décrite dans le présent document.

Declarações

The authors have nothing to disclose.

Acknowledgements

AFM analysis was performed on instrumentation supported by the Pennsylvania Muscle Institute and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, the University of Pennsylvania. This work was supported by NIH grants HL62250 and AG047373. YHB was supported by post-doctoral fellowship from the American Heart Association.

Materials

BioScope Catalyst AFM system Bruker
Nikon Eclipse TE 200 inverted microscope Nikon Instruments
Silicon nitride AFM probe Novascan Technologies PT.SI02.SN.1 0.06 N/m cantilever; 1 µm SiO2 particle
Dumont #5 forceps Fine Science Tools 11251-10 See section 1.4
Dumont #5SF forceps Fine Science Tools 11252-00 See section 1.8
Fine Scissors-ToughCut Fine Science Tools 14058-11 See section 1.4 (medium sized)
Vannas-Tübingen spring scissors Fine Science Tools 15008-08 See section 1.6 (small sized)
60mmTC-treated cell culture dish Corning 353004
Dulbecco's Phosphate-Buffered Saline, 1X Corning 21-031-CM Without calcium and magnesium
Krazy Glue instant all purpose liquid Krazy Glue KG58548R See section 2.2
Gel-loading tips, 1-200 µL Fisher 02-707-139 See section 2.2
Tip Tweezers Electron Microscopy Sciences 78092-CP See section 3.2
50-mm, clear wall glass bottom dishes TED PELLA 14027-20 See section 4.4

Referências

  1. Kothapalli, D., et al. Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening. Cell Rep. 2, 1259-1271 (2012).
  2. Liu, S. -. L., et al. Matrix metalloproteinase-12 is an essential mediator of acute and chronic arterial stiffening. Sci Rep. 5, 17189 (2015).
  3. Lakatta, E. G. Central arterial aging and the epidemic of systolic hypertension and atherosclerosis. J Am Soc Hypertens. 1, 302-340 (2007).
  4. Stehouwer, C. D. A., Henry, R. M. A., Ferreira, I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 51, 527-539 (2008).
  5. Steppan, J., Barodka, V., Berkowitz, D. E., Nyhan, D. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System. Cardiol Res Pract. 2011, 263585 (2011).
  6. Duprez, D. A., Cohn, J. N. Arterial stiffness as a risk factor for coronary atherosclerosis. Curr Atheroscler Rep. 9, 139-144 (2007).
  7. Mitchell, G. F., et al. Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study. Circulation. 121, 505-511 (2010).
  8. Sutton-Tyrrell, K., et al. Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults. Circulation. 111, 3384-3390 (2005).
  9. Klein, E. A., et al. Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening. Curr Biol. 19, 1511-1518 (2009).
  10. Bae, Y. H., et al. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci signal. 7, ra57 (2014).
  11. Thyberg, J., Hedin, U., Sjölund, M., Palmberg, L., Bottger, B. A. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arterioscler Thromb Vasc Biol. 10, 966-990 (1990).
  12. Owens, G. K., Kumar, M. S., Wamhoff, B. R. Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol Rev. 84, 767-801 (2004).
  13. Huynh, J., et al. Age-Related Intimal Stiffening Enhances Endothelial Permeability and Leukocyte Transmigration. Sci Transl Med. 3, 112ra122 (2011).
  14. Safar, M. E., Levy, B. I., Struijker-Boudier, H. Current Perspectives on Arterial Stiffness and Pulse Pressure in Hypertension and Cardiovascular Diseases. Circulation. 107, 2864-2869 (2003).
  15. Raffetto, J. D., Khalil, R. A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 75, 346-359 (2008).
  16. Muller, D. J., Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol. 3, 261-269 (2008).
  17. Hsu, B. Y., Bae, Y. H., Mui, K. L., Liu, S. -. L., Assoian, R. K. Apolipoprotein E3 Inhibits Rho to Regulate the Mechanosensitive Expression of Cox2. PLoS ONE. 10, e0128974 (2015).
  18. Johnson, K. L., Kendall, K., Roberts, A. D. Surface Energy and the Contact of Elastic Solids. Proc R Soc Lond A. 324, 301-313 (1971).
  19. Derjaguin, B. V., Muller, V. M., Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 53, 314-326 (1975).
  20. Hutter, J. L., Bechhoefer, J. Calibration of atomic-force microscope tips. Rev Sci Instrum. 64, 1868-1873 (1993).
  21. Pries, A. R., Secomb, T. W., Gaehtgens, P. The endothelial surface layer. Pflugers Arch EJP. 440, 653-666 (2000).
  22. Pogoda, K., et al. Depth-sensing analysis of cytoskeleton organization based on AFM data. Eur Biophys J. 41, 79-87 (2012).
  23. Mendez, M. G., Restle, D., Janmey, P. A. Vimentin Enhances Cell Elastic Behavior and Protects against Compressive Stress. Biophys J. 107, 314-323 (2014).
  24. Moreno-Flores, S., Benitez, R., Md Vivanco, ., Toca-Herrera, J. L. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components. Nanotechnology. 21, 445101 (2010).
  25. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech. 41, 454-464 (2008).
  26. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R. S. Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope. Biophys J. 82, 2798-2810 (2002).
  27. Mahaffy, R. E., Shih, C. K., MacKintosh, F. C., Käs, J. Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells. Phys Rev Lett. 85, 880-883 (2000).
  28. Amin, M., Le, V. P., Wagenseil, J. E. Mechanical Testing of Mouse Carotid Arteries: from Newborn to Adult. J Vis Exp. , e3733 (2012).
  29. Laurent, S., et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 27, 2588-2605 (2006).
  30. Plodinec, M., et al. The nanomechanical signature of breast cancer. Nat Nano. 7, 757-765 (2012).
  31. Raman, A., et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nano. 6, 809-814 (2011).
check_url/pt/54630?article_type=t

Play Video

Citar este artigo
Bae, Y. H., Liu, S., Byfield, F. J., Janmey, P. A., Assoian, R. K. Measuring the Stiffness of Ex Vivo Mouse Aortas Using Atomic Force Microscopy. J. Vis. Exp. (116), e54630, doi:10.3791/54630 (2016).

View Video