Summary

Mikroglia som et surrogat Biosensor til Bestem Nanopartikel Neurotoksicitet

Published: October 25, 2016
doi:

Summary

Microglia (immune cells of the brain), are used as a surrogate biosensor to determine how nanoparticles influence neurotoxicity. We describe a series of experiments designed to assay microglial response to nanoparticles and exposure of hypothalamic neurons to supernatant from activated microglia to determine neurotoxicity.

Abstract

Nanoparticles found in air pollutants can alter neurotransmitter profiles, increase neuroinflammation, and alter brain function. Therefore, the assay described here will aid in elucidating the role of microglia in neuroinflammation and neurodegenerative diseases. The use of microglia, resident immune cells of the brain, as a surrogate biosensor provides novel insight into how inflammatory responses mediate neuronal insults. Here, we utilize an immortalized murine microglial cell line, designated BV2, and describe a method for nanoparticle exposure using silver nanoparticles (AgNPs) as a standard. We describe how to expose microglia to nanoparticles, how to remove nanoparticles from supernatant, and how to use supernatant from activated microglia to determine toxicity, using hypothalamic cell survival as a measure. Following AgNP exposure, BV2 microglial activation was validated using a tumor necrosis factor alpha (TNF-α) enzyme linked immunosorbent assay (ELISA). The supernatant was filtered to remove the AgNP and to allow cytokines and other secreted factors to remain in the conditioned media. Hypothalamic cells were then exposed to supernatant from AgNP activated microglia and survival of neurons was determined using a resazurin-based fluorescent assay. This technique is useful for utilizing microglia as a surrogate biomarker of neuroinflammation and determining the effect of neuroinflammation on other cell types.

Introduction

Miljømæssige forureninger, specielt dem af nanopartikel (NP) område (1 – 20 nm i diameter), har været forbundet med fedme og andre neurodegenerative sygdomme som følge af evnen til at krydse blod-hjerne barrieren 1-3. Forhøjet udsættes for forurening kan inducere inflammation i centralnervesystemet, herunder hypothalamus 1. En mulig mekanisme, hvor dette sker kunne være gennem nanopartikel induceret aktivering af mikroglia (hjerne immunceller) 4. Tidligere undersøgelser har anvendt in vivo modeller til at studere virkningerne af NP'er på hjernens sundhed, som er tidskrævende, dyre, og som ikke direkte besvare spørgsmålet om, hvordan NP'er påvirke mikroglia. Microglia spiller en mangesidet rolle i det centrale nervesystem, herunder vedligeholdelse af hjernen mikromiljø og kommunikere med omgivende neuroner via frigivelse af udskilte faktorer og cytokiner. Afhængigt af stimuli, kan mikroglia aktiveres til en M1 pro-inflammatoriske eller en M2 antiinflammatorisk tilstand. For eksempel M1 aktiverede mikroglia frigive pro-inflammatoriske cytokiner, såsom tumornekrosefaktor-alfa (TNF-α), mens M2 aktiverede mikroglia frigivelse anti-inflammatoriske cytokiner, herunder interleukin-4 (IL-4). For at validere vores surrogat in vitro biosensor til bestemmelse neurotoksicitet af luftforurenende stoffer, vi målte mikroglial respons på 20 nm sølv nanopartikler (AgNPs). Målet med denne artikel er at beskrive, hvordan en in vitro mikroglial cellelinie kan bruges som et surrogat biosensor markør til test murine mikroglial respons på nationale parlamenter og hvordan mikroglial aktivering påvirker hypothalamus celler. Den langsigtede tilsigtede anvendelse af dette valideret model er at afprøve effekten af ​​den virkelige verden forurenende stoffer på hjernen sundhed og neurodegenerativ sygdom. Vi giver en detaljeret beskrivelse af en in vitro format med 96 brønde assay til måling mikroglial aktivering og hypothalamus celle overlevelse efter eksponering af mic roglial konditionerede medier.

Mikroglial aktivering blev bestemt efter AgNP eksponering ved anvendelse af en TNF-α enzymbundet immunsorbentassay (ELISA). For at bestemme virkningen af ​​aktiveret mikroglia på hypothalamus celler blev AgNPs fjernet fra mikroglial supernatant (konditioneret medium) under anvendelse af en filtreringsanordning. Filtreringen enhed bevarer cytokiner mens eksklusive AgNPs baseret på størrelse. Kort fortalt, supernatanten fra mikroglia behandlet med eller uden AgNPs blev opsamlet, tilsat til filtrene, og centrifugeret ved 14.000 xg i 15 min. Vi kunne derefter bestemme indflydelsen af ​​microgliale secernerede cytokiner på hypothalamus cellelevedygtighed. Celletoksicitet efter udsættelse for konditionerede medier (indeholdende cytokiner) blev bestemt via en resazurin-baseret assay som tidligere beskrevet 5,6. Metabolisk aktive celler reducerer resazurin og producere et fluorescerende signal proportionalt med antallet af levedygtige celler 7.

nt "> Der er flere fordele ved at anvende denne teknik igen andre (såsom co-kultur, trans-well opsætninger, eller in vivo forsøg). Vores model giver mulighed for direkte at aktivere mikroglia og afgøre, om udskilte faktorer er giftige for neuroner 8 . Den nuværende protokol anvendelser udødeliggjort BV2 mikroglia stimuleret med nanopartikler diameter 20 nm, og udødeliggjort murine hypothalamus celler (betegnet mHypo-A1 / 2) 9 til bestemmelse af efterfølgende reaktion. Selvom denne protokol er blevet optimeret til disse specifikke betingelser, metoder kan være ændret til at blive anvendt i andre modeller af mikroglial-induceret celledød, eller med andre celletyper, herunder primære microglia og neuroner.

Protocol

1. mikroglial Cell Culture Maintenance Varm celledyrkningsmedium (Dulbeccos Modified Eagle Medium; DMEM) suppleret med 10% føtalt bovint serum (FBS) og 1% penicillin / streptomycin / neomycin (PSN) til 37 ° C. Opnå frossen bestand af BV2 mikrogliaceller ved passage 18 – 25 fra opbevaring ved -80 ° C. Hurtigt tø celler i 37 ° C vandbad. Overføre forsigtigt celler til en 75 cm2 udluftet kolbe indeholdende 10 ml cellekulturmedium. Inkuber kolbe i 5% CO2 …

Representative Results

Vi viser, at mikroglia fungerer som et surrogat biosensor for hjernens reaktion på nanopartikler ved anvendelse af protokollen ovenfor. Vores resultater omfatter måling af de toksiske virkninger af mikroglial aktivering på downstream neuronal celledød. Figur 1 viser en arbejdsproces af protokollen til at aktivere mikroglia og afgøre, om der udskilles cytokiner reducere levedygtighed hypothalamus neuroner. TNF-α-sekretion blev signifikant øget efter AgNP eksponerin…

Discussion

Recent studies support that environmental exposure contributes to obesity and other neurodegenerative diseases 11,12. However, techniques used in previous studies are time consuming and expensive. Economic considerations, physiologically relevant delivery systems, ethical issues with extensive use of in vivo animal models, and difficulty translating findings into meaningful health advisories are a few of the major challenges that have impeded advancements in studying NP-induced neurotoxicity 13</…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was funded by the US Department of Veterans Affairs BLR&D IK2 BX001686 (to TAB), and grants from the University of Minnesota Healthy Foods, Healthy Lives Institute (to CMD, JPN, and TAB) and the Minnesota Veterans Medical Research & Education Foundation (to TAB). We thank Drs. Philippe Marambaud (Feinstein Institute for Medical Research, Manhasset, NY) and Weihua Zhao (Methodist Hospital, Houston, TX) for providing the BV2 cell line.

Materials

Cells/Reagents
Mouse microglial cell line (BV2) Interlab Cell Line Collection (Genoa, Italy) ATL03001
Adult Mouse Hypothalamus Cell Line mHypoA-1/2  Cellutions Biosystems Inc. CLU172
Dulbecco’s Modified Eagle’s Medium Invitrogen 10313-039
Fetal bovine serum  PAA Labs A15-751
Penicillin/Streptomycin/Neomycin Thermo Fisher Scientific 15640-055
Trypsin-EDTA Thermo Fisher Scientific 25200056
Silver nanoparticles (20nm) Sigma-Aldrich 730793

PrestoBlue Cell Viability Reagent
Invitrogen A13262
Mouse TNF-α ELISA Max Delux Biolegend 430904
Lipopolysaccharide Sigma-Aldrich L4391
Sodium Citrate Sigma-Aldrich S4641
Equipment
96W Optical Bottom Plate, Black Polystyrene, Cell Culture Treated, with lid, Sterile Thermo Fisher Scientific 165305
Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-10 membrane EMD Millipore UFC501008
SpectraMax M5 Multi-Mode Microplate Molecular Devices M5
Falcon 50mL Conical Centrifuge Tubes Corning, Inc
14-432-22
Falcon Cell Strainers 70 μm Corning, Inc 08-771-2
Tabletop centrifuge 5430 Eppendorf 22620560

Referências

  1. Block, M. L., Calderon-Garciduenas, L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32, 506-516 (2009).
  2. Brochu, P., Bouchard, M., Haddad, S. Physiological daily inhalation rates for health risk assessment in overweight/obese children, adults, and elderly. Risk Anal. 34, 567-582 (2014).
  3. Jerrett, M., et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 13, 49 (2014).
  4. Kraft, A. D., Harry, G. J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health. 8, 2980-3018 (2011).
  5. Duffy, C. M., et al. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci Lett. 606, 140-144 (2015).
  6. Butterick, T. A., et al. Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp. , (2014).
  7. Xiao, J., et al. Monitoring of cell viability and proliferation in hydrogel-encapsulated system by resazurin assay. Appl Biochem Biotechnol. 162, 1996-2007 (2010).
  8. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 27, 229-237 (1990).
  9. Belsham, D. D., et al. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J. 23, 4256-4265 (2009).
  10. Paramelle, D., et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 139, 4855-4861 (2014).
  11. Wei, Y., et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J. , (2016).
  12. Levesque, S., Surace, M. J., McDonald, J., Block, M. L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 8, 105 (2011).
  13. Block, M. L., et al. The outdoor air pollution and brain health workshop. Neurotoxicology. 33, 972-984 (2012).
  14. Carson, M. J., Crane, J., Xie, A. X. Modeling CNS microglia: the quest to identify predictive models. Drug Discov Today Dis Models. 5, 19-25 (2008).
  15. Valdearcos, M., et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124-2138 (2014).
  16. Perry, V. H., Holmes, C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 10, 217-224 (2014).
  17. Block, M. L., Hong, J. S. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 35, 1127-1132 (2007).
  18. Vincenti, J. E., et al. Defining the Microglia Response during the Time Course of Chronic Neurodegeneration. J Virol. 90, 3003-3017 (2015).
  19. Grabert, K., et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 19, 504-516 (2016).
  20. Lull, M. E., Block, M. L. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7, 354-365 (2010).
  21. Oeckinghaus, A., Hayden, M. S., Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 12, 695-708 (2011).
  22. Gifford, J. C., et al. Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis. Chem Commun (Camb). 50, 15860-15863 (2014).
  23. Colella, M., Lobasso, S., Babudri, F., Corcelli, A. Palmitic acid is associated with halorhodopsin as a free fatty acid. Radiolabeling of halorhodopsin with 3H-palmitic acid and chemical analysis of the reaction products of purified halorhodopsin with thiols and NaBH4. Biochim Biophys Acta. 1370, 273-279 (1998).
  24. Sherry, B., Jue, D. M., Zentella, A., Cerami, A. Characterization of high molecular weight glycosylated forms of murine tumor necrosis factor. Biochem Biophys Res Commun. 173, 1072-1078 (1990).
  25. . PubChem Compound Database Available from: https://pubchem.ncbi.nlm.nih.gov/compound/104755 (2004)
  26. Koenigsknecht-Talboo, J., Landreth, G. E. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 25, 8240-8249 (2005).
  27. McCarthy, R. C., et al. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation. 13, (2016).
  28. Schauer, J. J., et al. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ. 30, 3837-3855 (1996).
  29. Kleeman, M. J., et al. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. Environ Sci Technol. 43, 272-279 (2009).
  30. Borm, P. J., et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 3, (2006).
check_url/pt/54662?article_type=t

Play Video

Citar este artigo
Duffy, C. M., Ahmed, S., Yuan, C., Mavanji, V., Nixon, J. P., Butterick, T. Microglia as a Surrogate Biosensor to Determine Nanoparticle Neurotoxicity. J. Vis. Exp. (116), e54662, doi:10.3791/54662 (2016).

View Video