Summary

Analyse af SCAP<em> N</em> -glycosylation Og handel med humane celler

Published: November 08, 2016
doi:

Summary

Vi beskriver en modificeret fremgangsmåde til membranfraktion isoleret fra humane celler og prøveforberedelse til påvisning af SCAP N -glycosylation og totalt protein ved hjælp af Western blot. Vi yderligere indføre en metode GFP-mærkning for at overvåge SCAP menneskehandel hjælp konfokal mikroskopi. Denne protokol kan bruges i almindelige biologiske laboratorier.

Abstract

Elevated lipogenesis is a common characteristic of cancer and metabolic diseases. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors controlling the expression of genes important for the synthesis of cholesterol, fatty acids and phospholipids, are frequently upregulated in these diseases. In the process of SREBP nuclear translocation, SREBP-cleavage activating protein (SCAP) plays a central role in the trafficking of SREBP from the endoplasmic reticulum (ER) to the Golgi and in subsequent proteolysis activation. Recently, we uncovered that glucose-mediated N-glycosylation of SCAP is a prerequisite condition for the exit of SCAP/SREBP from the ER and movement to the Golgi. N-glycosylation stabilizes SCAP and directs SCAP/SREBP trafficking. Here, we describe a protocol for the isolation of membrane fractions in human cells and for the preparation of the samples for the detection of SCAP N-glycosylation and total protein by using western blot. We further provide a method to monitor SCAP trafficking by using confocal microscopy. This protocol is appropriate for the investigation of SCAP N-glycosylation and trafficking in mammalian cells.

Introduction

Deregulering af lipid metabolisme er et fælles kendetegn for kræft og metaboliske sygdomme 1-6. I disse processer sterol regulatorisk element-bindende proteiner (SREBPs), en familie af transkriptionsfaktorer, spiller en kritisk rolle i at kontrollere ekspressionen af gener vigtige for indførelsen og syntesen af cholesterol, fedtsyrer og phospholipider 7-10.

SREBPs, herunder SREBP-1a, SREBP-1c, og SREBP-2, syntetiseres som inaktive forstadier, der binder til det endoplasmatiske reticulum (ER) membran i kraft af to transmembrandomæner 7. N-terminalen af SREBPs indeholder et DNA-bindende domæne for transaktivering af målgener 11. Den C-terminale ende af SREBP forstadier bindes til SREBP spaltning-aktiverende protein (SCAP) 12,13, en polytopic membran protein, der spiller en central rolle i reguleringen af SREBP stabilitet og aktivering 14-16.

Den gennemførelførelsen af transkriptionel funktion kræver translokation af SCAP / SREBP kompleks fra ER til Golgi, hvor to proteaser sekventielt spalte SREBP og frigive dets N-terminalt fragment, som derefter træder ind i kernen for transaktivering af lipogene gener 7. I disse processer niveauerne af steroler i ER-membranen styre afgangen fra SCAP / SREBP kompleks fra ER 7,17. Under høje sterol betingelser, sterol binder til SCAP eller ER-resident insulin-induceret gen-protein-1 (INSIG-1) eller -2 (INSIG-2), øge associeringen af ​​SCAP med Insigs der bevarer SCAP / SREBP kompleks i ER 18-20. Når sterol niveauet falder, SCAP dissocieres med Insigs. Dette fører til en SCAP konformationel ændring, som tillader SCAP interaktion med fælles kappeproteiner (COP) II-komplekset. Komplekset medierer inkorporeringen af SCAP / SREBP kompleks i den spirende vesikler og dirigerer sin transport fra ER til Golgi 21,22. Ved translocation til Golgi, er SREBPs sekventielt spaltes af anlægsområde 1 og site-2 proteaser, hvilket fører til frigivelse af N-terminalen 7,23-29.

SCAP protein bærer tre N-forbundet oligosaccharider på asparagin (N) positioner N263, N590, og N641 15. Vi viste for nylig, at glucose-medieret N -glycosylation af SCAP i disse steder er en forudsætning for SCAP / SREBP handel fra ER til Golgi under lave sterol betingelser 30-32. Tab af SCAP glykosylering via mutation af alle tre asparagin til glutamin (NNN til QQQ) deaktiverer handelen med det SCAP / SREBP kompleks og resulterer i ustabilitet SCAP protein og reduktion af SREBP aktivering 31. Vores seneste data viser også, at SREBP-1 er stærkt aktiveret i glioblastom og reguleret af SCAP N -glycosylation 4,31,33,34. Målretning SCAP / SREBP-1 signalering fremstår som en ny strategi til at behandle maligniteter og metaboliske syndromes 1,3,35-38. Derfor er det vigtigt at udvikle en effektiv metode til at analysere SCAP protein og N -glycosylation niveauer, og overvåge dens handel med humane celler og patientens væv.

Den luminale region SCAP protein (aminosyrer 540-707) i ER indeholder to N -glycosylation steder (N590 og N641), der er beskyttet mod proteolyse når intakte membraner behandles med trypsin 15. Denne luminale fragmentet har en molekylvægt på ~ 30 kDa, der er lille nok til at tillade opløsningen af individuelle glycosylerede varianter af SCAP ved natriumdodecylsulfat polyacrylamid gel elektroforese (SDS-PAGE) 15,31. Her giver vi en metode til at påvise N -glycosylation af SCAP og det totale protein i humane celler. Denne protokol er afledt af den beskrevet i publikationer fra Brown og Goldstein laboratorium 15 og vores nylige publikation 31-metoden. Protokollen kan bruges i than studerer af SCAP protein fra pattedyrceller.

Protocol

1. Påvisning af endogene SCAP protein i humane celler Celledyrkning og behandling Frø ~ 1 × 10 6 U87-celler i en 10 cm skål med Dulbeccos modificerede Eagle-medium (DMEM) suppleret med 5% føtalt bovint serum (FBS) og inkuber cellerne ved 37 ° C og 5% CO2 i 24 timer før behandling. Vask cellerne én gang med phosphatbufret saltvand (PBS) og derefter skifte celler til frisk DMEM-medium med eller uden glucose (5 mM) i 12 timer. Fremstilling af C…

Representative Results

Figur 1 viser påvisningen af endogent SCAP protein og SREBP-1 nuklear udgave i humane glioblastom U87 celler som respons på glucose stimulation ved anvendelse af Western-blot. Membranproteinet SCAP detekteres i "membranfraktionen". Kernen formular (N-terminal) af SREBP-1 detekteres i "kerneekstrakter". Niveauet af SCAP protein (PDI tjener som en intern kontrol af ER membranproteiner) og SREBP-1 nuklear formular er markant forbedret ved glucose…

Discussion

I denne undersøgelse beskriver vi en protokol til isolering af membran fraktioner i humane celler og til udarbejdelse af prøverne til påvisning af SCAP N -glycosylation og total protein ved hjælp af Western blot. Vi tilbyder endvidere en metode til at overvåge SCAP handel ved hjælp af GFP-mærkning og konfokal mikroskopi. Den metode anvendes til at analysere membranprotein og er et vigtigt redskab til at undersøge SCAP N -glycosylation og menneskehandel.

Sammenlignet…

Declarações

The authors have nothing to disclose.

Acknowledgements

We are grateful to Drs. Mike S. Brown and Joseph L. Goldstein for their agreement to publish this method according to the methods described in their publications. We appreciate Dr. Peter Espenshade for sharing the GFP-SCAP plasmid. This work was supported by NIH grants NS072838 and NS079701 to D.G., American Cancer Society Research Scholar Grant RSG-14-228-01-CSM to D.G., and OSUCCC Pelotonia Postdoctoral Fellowship to C.C. We also appreciate the support from the Ohio State Neuroscience Core (P30 NS038526) and OSUCCC Translational Therapeutic Program seed grant and start-up funds to D.G.

Materials

X-treme GENE HP DNA Transfection Reagent  Roche 6366236001
Opti-MEMI medium  Life Technologies 31985-070
trypsin  Sigma T6567
soybean trypsin inhibitor Sigma T9777
PNGase F  Sigma P7367
Anti-SCAP (9D5) antibody   Santa Cruz sc-13553
GFP antibody  Roche 11814460001
SREBP-1 antibody (IgG-2A4) BD Pharmingen 557036
PDI Antibody (H-17) Santa Cruz sc-30932
Lamin A Antibody (H-102) Santa Cruz sc-20680
SCAP antibody (a.a 450-500) Bethyl Laboratories, Inc. A303-554A
Dulbecco’s modified Eagle’s medium (DMEM) without glucose, pyruvate and glutamine   Cellgro 17-207-CV Add 1 Mm Pyravate and 4 mM Glutamine before use
22G x 1 1/2 needle  BD  305156
pepstatin A Sigma P5318
leupeptin Sigma L2884
PMSF Sigma P7626
DTT Sigma 43819
ALLN Sigma A6185
Nitrocellulose membrane GE RPN3032D
EDTA Solution 0.5 M PH8.5 100 ml  VWR 82023-102 
EGTA 0.5 M sterile (PH 8.0) 50 ml Fisher Scentific 50255956
HyClone FBS Thermo scientific SH3007103
glycerol Sigma G5516
β-mercaptoethanol  Sigma M3148
bromophenol blue Sigma B8026
prolong gold antifade reagent with dapi life technologies P36935
L-glutamine (200 mM) life technologies 25030081
sodium pyruvate life technologies 11360-070

Referências

  1. Ru, P., Williams, T. M., Chakravarti, A., Guo, D. Tumor metabolism of malignant gliomas. Cancers (Basel). 5, 1469-1484 (2013).
  2. Moon, Y. A., et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell metabolism. 15, 240-246 (2012).
  3. Guo, D., Bell, E. H., Chakravarti, A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncology. 2, 289-299 (2013).
  4. Guo, D., et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proceedings of the National Academy of Sciences of the United States of America. , 12932-12937 (2009).
  5. Menendez, J. A., Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7, 763-777 (2007).
  6. Guo, D., Cloughesy, T. F., Radu, C. G., Mischel, P. S. AMPK: A metabolic checkpoint that regulates the growth of EGFR activated glioblastomas. Cell Cycle. 9, 211-212 (2010).
  7. Goldstein, J. L., DeBose-Boyd, R. A., Brown, M. S. Protein sensors for membrane sterols. Cell. 124, 35-46 (2006).
  8. Shao, W., Espenshade, P. J. Expanding Roles for SREBP in Metabolism. Cell metabolism. 16, 414-419 (2012).
  9. Nohturfft, A., Zhang, S. C. Coordination of lipid metabolism in membrane biogenesis. Annual review of cell and developmental biology. 25, 539-566 (2009).
  10. Jeon, T. I., Osborne, T. F. SREBPs: metabolic integrators in physiology and metabolism. Trends in endocrinology and metabolism: TEM. 23, 65-72 (2012).
  11. Sato, R., et al. Assignment of the membrane attachment, DNA binding, and transcriptional activation domains of sterol regulatory element-binding protein-1 (SREBP-1). The Journal of biological chemistry. 269, 17267-17273 (1994).
  12. Sakai, J., Nohturfft, A., Goldstein, J. L., Brown, M. S. Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies. The Journal of biological chemistry. 273, 5785-5793 (1998).
  13. Sakai, J., et al. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. The Journal of biological chemistry. 272, 20213-20221 (1997).
  14. Hua, X., Nohturfft, A., Goldstein, J. L., Brown, M. S. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 87, 415-426 (1996).
  15. Nohturfft, A., Brown, M. S., Goldstein, J. L. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. The Journal of biological chemistry. 273, 17243-17250 (1998).
  16. Nohturfft, A., Hua, X., Brown, M. S., Goldstein, J. L. Recurrent G-to-A substitution in a single codon of SREBP cleavage-activating protein causes sterol resistance in three mutant Chinese hamster ovary cell lines. Proc Natl Acad Sci U S A. 93, 13709-13714 (1996).
  17. Espenshade, P. J., Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet. 41, 401-427 (2007).
  18. Yang, T., et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 110, 489-500 (2002).
  19. Yabe, D., Brown, M. S., Goldstein, J. L. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci U S A. 99, 12753-12758 (2002).
  20. Yabe, D., Xia, Z. P., Adams, C. M., Rawson, R. B. Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Proc Natl Acad Sci U S A. 99, 16672-16677 (2002).
  21. Espenshade, P. J., Li, W. P., Yabe, D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proceedings of the National Academy of Sciences of the United States of America. 99, 11694-11699 (2002).
  22. Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S., Espenshade, P. J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 102, 315-323 (2000).
  23. Sakai, J., et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 85, 1037-1046 (1996).
  24. Wang, X., Sato, R., Brown, M. S., Hua, X., Goldstein, J. L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 77, 53-62 (1994).
  25. Brown, M. S., Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proceedings of the National Academy of Sciences of the United States of America. 96, 11041-11048 (1999).
  26. Rawson, R. B., DeBose-Boyd, R., Goldstein, J. L., Brown, M. S. Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem. 274, 28549-28556 (1999).
  27. Zelenski, N. G., Rawson, R. B., Brown, M. S., Goldstein, J. L. Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. J Biol Chem. 274, 21973-21980 (1999).
  28. Goldstein, J. L., Brown, M. S. A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell. 161, 161-172 (2015).
  29. Espenshade, P. J., Cheng, D., Goldstein, J. L., Brown, M. S. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. The Journal of biological chemistry. 274, 22795-22804 (1999).
  30. Guo, D. SCAP links glucose to lipid metabolism in cancer cells. Mol Cell Oncol. 3, (2016).
  31. Cheng, C., et al. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell. 28, 569-581 (2015).
  32. Shao, W., Espenshade, P. J. Sugar Makes Fat by Talking to SCAP. Cancer Cell. 28, 548-549 (2015).
  33. Guo, D., et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2, 82 (2009).
  34. Guo, D., et al. An LXR agonist promotes GBM cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1, 442-456 (2011).
  35. Guo, D., Bell, E. H., Mischel, P., Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des. 20, 2619-2626 (2014).
  36. Bell, E. H., Guo, D. Biomarkers for malignant gliomas. Malignant Gliomas, Radiation Medicine Rounds. 3, 339-357 (2012).
  37. Geng, F., et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res. , (2016).
  38. Ru, P., et al. Feedback Loop Regulation of SCAP/SREBP-1 by miR-29 Modulates EGFR Signaling-Driven Glioblastoma Growth. Cell Rep. , (2016).
  39. Green, M. R., Sambrook, J. . Molecular Cloning: A Laboratory Manual (Fourth Edition). , (2012).
  40. Uehara, T., et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 441, 513-517 (2006).
  41. Miyashita, T. Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol. 1278, 515-526 (2015).
  42. Cao, J., Guo, S., Arai, K., Lo, E. H., Ning, M. Studying extracellular signaling utilizing a glycoproteomic approach: lectin blot surveys, a first and important step. Methods Mol Biol. 1013, 227-233 (2013).
check_url/pt/54709?article_type=t

Play Video

Citar este artigo
Cheng, C., Guo, J. Y., Geng, F., Wu, X., Cheng, X., Li, Q., Guo, D. Analysis of SCAP N-glycosylation and Trafficking in Human Cells. J. Vis. Exp. (117), e54709, doi:10.3791/54709 (2016).

View Video