Summary

传粉生态学的田间试验:为例<em>血红石蒜</em>变种。<em>荪</em

Published: November 25, 2016
doi:

Summary

以显示一个给定植物物种的授粉有效性的田间试验的多种方法已被开发出来。这项研究表明了传粉生态学使用血红石蒜变种的血红的案例研究和小说授粉机制,打破芽授粉现场实验的基本方法。

Abstract

Plant-pollinator interactions have been studied for approximately one hundred years. During that time, many field methods have been developed to clarify the pollination effectiveness of each pollinator for visited flowers. Pollinator observations have been one of the most common methods to identify pollinators, and bagging and cage experiments have been conducted to show the effectiveness of specific pollinators. In a previous study of Lycoris sanguinea var. sanguinea, its effective pollinators, the visitation frequencies of each floral visitor, and its reproductive strategies were not identified. This study reports the observation that small bees visited flowers that were partially opened (breaking buds). To the best of our knowledge, this phenomenon has not been reported previously. Further, this study investigates the hypothesis that small bees can pollinate at that flowering stage. This study demonstrates the basic methods of field experiments in pollination ecology using L. sanguinea var. sanguinea. Pollinator observations and digital video showed the visitation frequencies of each floral visitor. Bagging and cage experiments revealed that these flowers could be pollinated fully and that breaking-bud pollination could be important for the pollination of this plant species. The advantages and disadvantages of each method are discussed, and recent developments, including laboratory experiments, are described.

Introduction

植物授粉的相互作用是进化生物学和生态学研究最好的例子。花和授粉之间的互惠关系被认为促进了被子植物1,2-作为自然选择的结果的多样化,尽管其他生物和非生物因素也产生影响3,4,5。它也被认为花性状已经改变,以适应最有效的传粉者,并产生更多的果实和种子6。这些信念已建成但基于不同的指数,如授粉效果的大型研究,涉及各种不同的解释7。

已经广义传粉系统的开花植物是由各种类型的授粉8参观。在这里,花贵宾在定义为访问得到花香奖励,并传粉被定义为授粉花卉游客的动物物种。一些游客携带同种的花粉来参观花的柱头,可以划分为传粉者。其他游客还可能有一些种内的花粉;他们可能由于授粉和花之间的行为或形态不匹配进行授粉少。在植物繁殖的贡献相媲美,这些差异可能产生对花性状9不同程度的选择性压力,并可能导致开花植物的适应性分歧。因此,虽然授粉群落的组成和相对物种丰度是重要的10中,每个访问者的效果的准确评估也很关键,以确定所述自适应和/或植物的进化过程。

在这项研究中,传粉的效率,定义为每探视频率果实和种子生产,定量估计被确定11。该规范观察IES每个花卉游客的频率,估计在参观花繁殖产生影响。通过人类观察花卉访问的记录是传粉生态学一个经典方法。但是,这种方法强加观察员,谁被要求保持在植物的前面,并采取谨慎,长期测量一个很大的负担。近日,拍摄和记录的技术已经发展迅速,低成本的数码摄像机已经启用了引进录像来观察授粉12,13。这些方法可以方便的对花卉的游客基本信息的收集,并有助于培养对象植物的传粉生态学的理解。

然而,传粉的探视频率不一定相关,其授粉有效性7,14,并评价各授粉的定性影响是很重要的花健身。授粉有效性已经通过花粉在柱头15,16的数目,花粉管生长17,18和果实和/或种子产量19,20估算。装袋的实验中,进行了使用访客排他性袋,是用于测试的自相容性,自花授粉21,22,和无融合生殖23的存在下,典型的方法。此外,授粉效果在访问者组合一定授粉评价已经频繁的环境中进行的,而其他花的游客已被限制(即一个铁丝笼,净,或用网眼足够小袋子,以排除大授粉即在开花植物集)。例如,进行了小网袋套袋实验揭示蚂蚁或蓟马24,25的授粉能力。此外,使用一个金属丝笼或网状鸟排除实验已经示出的芦荟类群的有效传粉26-28。

这项研究的目的是:1)引入在以前的文章中使用的方法和2),以改善这些方法在花卉的游客,他们的访问频率等的研究一般使用,以及它们对植物健身效果石蒜荪变种。 是包含在石蒜属,这是广泛分布在日本和狭义韩国29和具有漏斗形红橙色的花朵( 图1a)的品种之一。先前的研究表明,L.荪变种是血红多个昆虫物种,其中包括一名身份不明的小蜂种和较大的品种Amegilla弗洛雷亚 29访问。然而,这些游客探视频率和授粉效果尚未发现。首先进行的访花的授粉鉴定意见。通过探访小蜜蜂是表外实体RVED上还没有完全没有开通花(花蕾破; 1b,C)。小蜜蜂赶紧搬来搬去在打破芽undehisced花药和使用他们的下颚采集花粉。该假设是小蜜蜂可能是在磨合蕾期授粉,因为花药和花的柱头之间的缝隙比蜜蜂的体长较小。因此,进行了套袋试验在磨合萌芽阶段,以测试小蜜蜂授粉能力,还考察L.的繁殖策略变种 。这些芽参观了小蜜蜂,这让蜜蜂的授粉能力的估计之后袋装。个人用未开封的芽笼。小网罩使用,通过它只有小蜜蜂可以传递,让整个flowe小蜜蜂授粉效率的估计环阶段。

Protocol

注:本文是根据我们以前的工作30。一些部分转载来自日本和斯普林格日本植物学会许可。 1。访花观察 观测场的选择 搜索中,植物材料分布的地区,采用可靠的资源,如图画书,学术期刊等调整研究地点的数量,以适应研究目标(选择候选研究地点比如,一个广泛的位置花的游客在日本的比较)。 检查所选择的候选群体的来自相关的…

Representative Results

被选定为授粉观察五个群体。在观测前阶段,在打开的鲜花和小蜜蜂破芽各种昆虫物种的探视得到了证实。花先生观察发现,大部分游客到所有五个研究点小蜂种Lasioglossum血吸虫个人。总探视记录表明该物种的探视比率在三个位点( 图2)分别为90%以上。与此相反,第二最常客,Amegilla弗洛雷亚 ,的比率分别在这些领域中低于10%。这些蜂种也?…

Discussion

花观测和装袋实验在该研究中采用的以显示探视频率和植物的雌性繁殖成功,分别。在Dafni酒店(1992)38,因为它可以记录用于分析观众的定时和持续时间,并防止观察者偏压录像带方法是有效的。但是,在当时,该方法需要昂贵的设备,和观察时间是由电池寿命的限制。近来,装备用于产生视频记录的成本下降,并且可以在其他授粉研究可以采用这一技术方法。在这项研究中,探视频率…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors thank the three anonymous reviewers for their helpful comments on the manuscript. This work was partly supported by Grant-in-Aid for JSPS Fellows (26.11613).

Materials

recording sheet any NA
insect net any NA
pooter any NA
ethyl acetate any NA
100% Ethanol any NA
plastic tube any NA
plastic case any NA
soft bag any NA
digital video camera(s) any NA
tripod(s) any NA
bags any NA
wire or plastic mesh boards any NA
iron wires any NA
labeling tape any NA
stick supporters any NA
soft strings or wire any NA
pincette(s) any NA

Referências

  1. Dodd, M. E., Silvertown, J., Chase, M. W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution. 53 (3), 732-744 (1999).
  2. van der Niet, T., Johnson, S. D. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 27, 353-361 (2012).
  3. Bascompte, J., Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Ann. Rev. Ecol. Evol Syst. 38, 567-593 (2007).
  4. Losos, J. B., Ricklefs, R. E. Adaptation and diversification on islands. Nature. 457, 830-836 (2009).
  5. Schnitzler, J., et al. Causes of plant diversification in the cape biodiversity hotspot of south africa. Syst. Biol. 60, 1-15 (2011).
  6. Stebbins, G. L. Adaptive radiation of reproductive characteristics in angiosperms I: pollination mechanisms. Ann. Rev. Ecol. Syst. 1, 307-326 (1970).
  7. Ne’eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, S. G., Dafni, A. A framework for comparing pollinator performance: effectiveness and efficiency. Biol. Rev. 85, 435-451 (2010).
  8. Waser, N. M., Chittka, L., Pirce, M. V., Williams, N. M., Ollerton, J. Generalization in pollination systems, and why it matters. Ecology. 77 (4), 1043-1060 (1996).
  9. Sahli, H. F., Conner, J. K. Visitation, effectiveness and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). Am. J. Bot. 94, 203-209 (2007).
  10. Moeller, D. A. Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana. ssp. xantiana. Oecologia. 142 (1), 28-37 (2005).
  11. Keys, R. N., Buchmann, S. L., Smith, S. E. Pollination effectiveness and pollination efficiency of insects foraging Prosopis velutina.in south-eastern Arizona. J. Appl. Ecol. 32 (3), 519-527 (1995).
  12. Pedron, M., Buzatto, C. R., Singer, R. B., Batista, J. A. N., Moser, A. Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern. J. Linn. Soc. 170, 141-156 (2012).
  13. Phillips, R. D., et al. Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Ann. Bot. 113, 629-641 (2014).
  14. Mayfield, M. M., Waser, N. M., Price, M. V. Exploring the "most effective principle" with complex flowers: bumblebees and Ipomopsis aggregata. Ann. Bot. 88, 591-596 (2001).
  15. Herrera, C. M. Components of pollinator "quality": comparative analysis of a diverse insect assemblage. Oikos. 50, 79-90 (1987).
  16. Hargreaves, A. L., Weiner, J. L., Eckert, C. G. High-elevation range limit of an herb is neither caused nor reinforced by declining pollinator service. J. Ecol. 103, 572-584 (2015).
  17. Motten, A. F. Reproduction of Erythronium umbilicatum. (Liliaceae): pollination success and pollinator effectiveness. Oecologia. 59, 351-359 (1983).
  18. Betts, M. G., Hadley, A. S., Kress, W. J. Pollinator recognition by a keystone tropical plant. Proc. Natl. Acad. Sci. 112 (11), 3433-3438 (2015).
  19. Schemske, D. W., Horvitz, C. C. Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science. 225 (4661), 519-521 (1984).
  20. Spears, E. E. A direct measure of pollinator effectiveness. Oecologia. 57, 196-199 (1983).
  21. Sun, M., Ritland, K. Mating system of yellow starthistle (Centaurea solstitialis.), a successful colonizer in North America. Heredity. 80, 225-232 (1998).
  22. Suetsugu, K. Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis. Plant Syst. Evol. 299, 481-486 (2013).
  23. Dupont, Y. L. Evolution of apomixis as a strategy of colonization in the dioecious species Lindera glauca. (Lauraceae). Popul. Ecol. 44, 293-297 (2002).
  24. Ramsey, M. Ant pollination of the perennial herb Blandfordia grandiflora (Liliaceae). Oikos. 74, 265-272 (1995).
  25. Moog, U., Fiala, B., Federle, W., Maschwitz, U. Thrips pollination of the dioecious ant plant Macaranga hullettii.(Euphorbiaceae) in Southeast Asia. Am. J. Bot. 89 (1), 50-59 (2002).
  26. Stokes, C. J., Yeaton, R. I. Population dynamics, pollination ecology and the significance of plant height in Aloe candelabrum. Afr. J. Ecol. 33, 101-113 (1995).
  27. Hargreaves, A. L., Harder, L. D., Johnson, S. D. Aloe inconspicua.: The first record of an exclusively insect-pollinated aloe. S. Afr. J. Bot. 74, 606-612 (2008).
  28. Botes, C. B., Johnson, S. D., Cowling, R. M. The birds and the bees: using selective exclusion to identify effective pollinators of African tree aloes. Int. J. Plant. Sci. 170 (2), 151-156 (2009).
  29. Kawano, S. Life-history monographs of Japanese plants. 13: Lycoris sanguinea.Maxim (Amaryllidaceae). Plant Spec. Biol. 24, 139-144 (2009).
  30. Yamaji, F., Ohsawa, A. T. Breaking-bud pollination: a new pollination process in partially opened flowers by small bees. J. Plant Res. 128 (5), 803-811 (2015).
  31. Sun, M., Gross, K., Schiestl, F. P. Floral adaptation to local pollinator guilds in a terrestrial orchid. Ann. Bot. 113, 289-300 (2014).
  32. Sletvold, N., Trunschke, J., Wimmergren, C., Ågren, J. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea. Ecology. 93, 1880-1891 (2012).
  33. R Core Team. . A language and environment for statistical computing. , (2014).
  34. . . IBM Statistics Version 21. , (2012).
  35. . . SAS Version 9.2. , (2009).
  36. Ma, B., Tarumoto, I., Morikawa, T. Cytological studies on selfed plants and interspecific crosses produced in four species of genus Lycoris.(Amaryllidaceae). Sci Rep Coll Agric Osaka Pref Univ. 52, 13-18 (2000).
  37. Ma, B., Tarumoto, I., Nakamura, N., Kunitake, H. Production of interspecific hybrids between Lycoris incarnata.and four other Lycoris.species through embryo culture. J Japan Soc Hortic Sci. 70, 697-703 (2001).
  38. Dafni, A. . Pollination ecology: a practical approach. , (1992).
  39. Abrahamczyk, S., Kluge, J., Gareca, Y., Reichle, S., Michael, K. The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS One. 6 (11), e27115 (2011).
  40. Suetsugu, K., Hayamizu, M. Moth floral visitors of the three rewarding Platanthera. orchids revealed by interval photography with a digital camera. J. Nat. Hist. 48, 1103-1109 (2014).
  41. Steen, R. Pollination of Platanthera chlorantha.(Orchidaceae): new video registration of a hawkmoth (Sphingidae). Nord. J. Bot. 30, 623-626 (2012).
  42. Sakamoto, R. L., Morinaga, S., Ito, M., Kawakubo, N. Fine-scale flower-visiting behavior revealed by using a high-speed camera. Behav. Ecol. Sociobiol. 66, 669-674 (2012).
  43. Johnson, S. D., Steiner, K. E. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15, 140-143 (2000).
  44. King, C., Ballantyne, G., Willmer, P. G. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811-818 (2013).
  45. Gathmann, A., Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757-764 (2002).
  46. Greenleaf, S. S., Williams, N. M., Winfree, R., Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia. 153, 589-596 (2007).
  47. Rademaker, M. C. J., De Jong, T. J., Klinkhamer, P. G. L. Pollen dynamics of bumble-bee visitation on Echium vulgare. Func. Ecol. 11, 554-563 (1997).
  48. Adler, L. S., Irwin, R. E. Comparison of pollen transfer dynamics by multiple floral visitors: experiments with pollen and fluorescent. Ann. Bot. 97, 141-150 (2006).
  49. Krauss, S. Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol. Ecol. 8, 217-226 (1999).
  50. Gerber, S., Mariette, S., Streiff, R., Bodenes, C., Kremer, A. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 9, 1037-1048 (2000).
  51. Matsuki, Y., Isagi, Y., Suyama, Y. The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol. Ecol. 7, 194-198 (2007).
  52. Hirota, S. K., et al. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis.: Evidence from genotyping individual pollen grains on the stigma. PLoS One. 8 (12), e85601 (2013).
check_url/pt/54728?article_type=t

Play Video

Citar este artigo
Yamaji, F., Ohsawa, T. A. Field Experiments of Pollination Ecology: The Case of Lycoris sanguinea var. sanguinea. J. Vis. Exp. (117), e54728, doi:10.3791/54728 (2016).

View Video