Summary

扩大奈米基材使用缝合技术的细胞行为Nanotopographical调制

Published: December 08, 2016
doi:

Summary

A protocol for producing a large area of nanopatterned substrate from small nanopatterned molds for study of nanotopographical modulation of cell behavior is presented.

Abstract

Substrate nanotopography has been shown to be a potent modulator of cell phenotype and function. To dissect nanotopography modulation of cell behavior, a large area of nanopatterned substrate is desirable so that enough cells can be cultured on the nanotopography for subsequent biochemical and molecular biology analyses. However, current nanofabrication techniques have limitations to generate highly defined nanopatterns over a large area. Herein, we present a method to expand nanopatterned substrates from a small, highly defined nanopattern to a large area using stitch technique. The method combines multiple techniques, involving soft lithography to replicate poly(dimethylsiloxane) (PDMS) molds from a well-defined mold, stitch technique to assemble multiple PDMS molds to a single large mold, and nanoimprinting to generate a master mold on polystyrene (PS) substrates. With the PS master mold, we produce PDMS working substrates and demonstrate nanotopographical modulation of cell spreading. This method provides a simple, affordable yet versatile avenue to generate well-defined nanopatterns over large areas, and is potentially extended to create micro-/nanoscale devices with hybrid components.

Introduction

A number of recent findings reveal that substrate nanotopography has pronounced influence on cell behavior, from cell adhesion, spreading and migration, to proliferation and differentiation1-6. For instance, a smaller cell size and lower proliferation rate have been observed in cells cultured on deep nanogratings, even leading to apoptosis although the cell alignment, elongation and migration were enhanced, compared with the flat controls2,7-10. Moreover, nanotopography has been shown to facilitate the differentiation of stem cells into certain lineages such as neuron2,11,12, muscle13, and bone3,4. In addition, because of increasing concerns on the toxicity of engineered nanomaterials14,15, there is a need to incorporate nanotopography into physiologically relevant in vitro models for accurate risk assessment of nanomaterials. To fulfil the biochemical and molecular biology analyses, enough cells are needed to be grown on a large area of nanopatterned substrate. However, conventional nanofabrication techniques have limitations to generate highly defined nanopatterns over a large area.

Self-assembly including colloid lithography16 and polymer demixing17 can readily generate large-area nanostructures at low costs. Because self-assembly relies on interactions between the assembling elements such as colloidal particles and macromolecules, and possible interactions between these elements and substrate, it cannot be a stand-alone method of producing nanostructures with precise spatial positioning and arbitrary shapes18. The accompanied high density of defects is also a drawback. Precise spatial control of nanopatterns can be achieved by employing templated self-assembly, which uses top-down lithographic approaches to provide the topographical and/or chemical template to guide the bottom-up assembly of the assembling elements19-21. Alternative nanofabrication techniques such as step-and-flash lithography22 and a roll-to-roll nanoimprinting lithography23 have been developed but have limited use because of their sophisticated process or the requirement of specialized equipment. Nevertheless, a template or a master mold with defined nanoscale patterns is needed for templated or alternative nanofabrication techniques.

Such templates and master molds are conventionally generated by using focused electron, ion, or photon beam lithography. For instance, electron beam lithography (EBL)24 and focused ion beam lithography25 can generate defined patterns with a sub-5 nm resolution. Two-photon lithography has demonstrated a feature size as small as 30 nm26. Although the focused beam lithography techniques enable generation of well-defined nanoscale structures, the capital investment and the time-consuming, costly process restrict their widespread use in academic research27. Therefore, it is highly desirable to develop enabling yet affordable techniques to produce a large area of nanopatterned surfaces with high fidelity.

We have reported a simple, cost-effective stitch technique for generating a large area of nanopatterned surface from a small well-defined mold28. This protocol provides step-by-step procedure from replication of poly(dimethylsiloxane) (PDMS) molds using an EBL-written pattern, to assembly of multiple PDMS molds into a single large mold, to generation of a master mold on polymeric such as polystyrene (PS) substrates, to production of working substrates. With the expanded nanopatterned substrates, we demonstrated nanotopographical modulation of cell spreading.

Protocol

1.从EBL模具硅橡胶模具的复制制造硅模具29 旋涂200μl的聚甲基丙烯酸甲酯(PMMA)以2,500转1分钟1×1 4cm的硅(Si)的基片上的解决方案,以形成薄膜。 烘烤,在180℃的Si衬底2分钟在PMMA膜。 通过在300μC/ cm 2的面积的剂量使用聚焦电子束写在PMMA膜中的设计的纳米图案。 开发开发商PMMA纳米图案为80秒。 沉积的PMMA纳米图案并在厚度使用电子束蒸发…

Representative Results

线圈技术可以产生具有高保真纳米图案基板的大面积。 图1a和1b分别显示从缝合的PDMS模具PS板和PS薄膜的Si衬底上转移,纳米图案的大的面积。原始EBL写入模具( 图1c)和工作基板( 图1d)的最终的PDMS之间的比较证实,EBL写纳米图案可以忠实地转印到工作衬底。各种几何形状和尺寸的纳米形貌可以用于调节细胞行为。?…

Discussion

我们提出了一个简单,经济实惠,还没有通用的方法来生成纳米图案化衬底的大面积。要忠实地扩大高度定义的纳米图案,极具应注意的几个关键步骤。第一个是修剪多个PDMS模具。与PDMS模具的无图案的区域需要被去除。此外,模具的侧壁应切垂直地尽可能完美以最小化模具之间的间隙。总的来说,未图案化的区域中的最后一针模的部分可以减小。其次,需要没有在硅衬底上的任何扭曲对齐这些PD…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was partly supported by NSF CBET 1227766, NSF CBET 1511759, and Byars-Tarnay Endowment. We gratefully acknowledge use of the West Virginia University Shared Research Facilities which are supported, in part, by NSF EPS-1003907.

Materials

JEOL field emission SEM JEOL JSM-7600F EBL
E-beam evaporator Kurt J. Lesker Model: LAB 18 e-beam evaporator nickel deposition
Trion Minilock III ICP/RIE Trion technology Model: Minilock-phantom III
Press machine PHI Hydraulic Press Molde: SQ-230H
Spin coater Laurell Technologies Modle: WS-400A-6NPP-LITE
CO2 critical dryer Tousimis Modle: Autosamdri-815
Silicon wafer University Wafer 1080
Aluminum plates McMaster-carr 9057K123
Teflon sheets McMaster-carr 8711K92
100 mm petri dish FALCON 353003
60 mm petri dish FALCON 353004
Glass coverslip Fisher Scientific 12-542-B
Glass slide Fisher Scientific 12-550-34
Disposable weighing boats Fisher Scientific 13-735-743
Glass desiccator Fisher Scientific 02-913-360
Plastic desiccator Bel-Art Products F42025-000
Hotplate Fisher Scientific 1110049SH
Tweezer Ted Pella, inc. 5726
Blade Fisher Scientific S17302
Metal blocks McMaster-carr
Punch Brettuns Village Leather Craft Supplies Arch punch
Poly(methyl methacrylate) MicroChem 495 PMMA A4
PDMS Dow Corning Sylgard 184 kit
Polystyrene Dow Chemical Styron 685D
1H,1H,2H,2H-perfluorooctylmethyldichlorosilane Oakwood Chemical 7142
Developer MicroChem MIBK/IPA at 1: 3 ratio
Remover MicroChem Remover PG
Ethanol Fisher Scientific BP2818500
Toluene Fisher Scientific T324-500
Phosphate buffered saline Sigma Aldrich D8537
Dulbecco’s modified eagle medium Sigma Aldrich D5796
Fetal bovine serum Atlanta Biologicals S11550
Paraformaldehyde Electron Microsopy Science 15712-S
Glutaraldehyde  Fisher Chemical G151-1
Fibronectin Corning 356008
A549 cells ATCC ATCC CCL-185

Referências

  1. Silva, G. A., et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 303 (5662), 1352-1355 (2004).
  2. Yim, E. K. F., Pang, S. W., Leong, K. W. Synthetic Nanostructures Inducing Differentiation of Human Mesenchymal Stem Cells into Neuronal Lineage. Exp. Cell Res. 313 (9), 1820-1829 (2007).
  3. Dalby, M. J., et al. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nat. Mater. 6 (12), 997-1003 (2007).
  4. Oh, S., et al. Stem Cell Fate Dictated Solely by Altered Nanotube Dimension. Proc. Natl. Acad. Sci. U. S. A. 106 (7), 2130-2135 (2009).
  5. Brunetti, V., et al. Neurons Sense Nanoscale Roughness with Nanometer Sensitivity. Proc. Natl. Acad. Sci. U. S. A. 107 (14), 6264-6269 (2010).
  6. McMurray, R., et al. Nanoscale Surfaces for the Long-term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency. Nat. Mater. 10 (8), 637-644 (2011).
  7. Yim, E. K. F., et al. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 26 (26), 5405-5413 (2005).
  8. Gerecht, S., et al. The Effect of Actin Disrupting Agents on Contact Guidance of Human Embryonic Stem Cells. Biomaterials. 28 (28), 4068-4077 (2007).
  9. Bettinger, C. J., Zhang, Z., Gerecht, S., Borenstein, J. T., Langer, R. Enhancement of in vitro Capillary Tube Formation by Substrate Nanotopography. Adv. Mater. 20 (1), 99-103 (2008).
  10. Thakar, R. G., Ho, F., Huang, N. F., Liepmann, D., Li, S. Regulation of vascular smooth muscle cells by micropatterning. Biochem. Biophys. Res. Commun. 307 (4), 883-890 (2003).
  11. Lee, M. R., et al. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 31 (15), 4360-4366 (2010).
  12. Moe, A. A. K., et al. Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small. 8 (19), 3050-3061 (2012).
  13. Dang, J. M., Leong, K. W. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 19 (19), 2775-2779 (2007).
  14. Dasgupta, N., et al. Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ. Sci. Pollut. Res. 23 (5), 4149-4163 (2016).
  15. Ranjan, S., et al. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ. Sci. Pollut. Res. 23 (12), 12287-12302 (2016).
  16. Deckman, H. W., Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 41 (4), 377-379 (1982).
  17. Dalby, M. J., Riehle, M. O., Johnstone, H., Affrossman, S., Curtis, A. S. G. In vitro Reaction of Endothelial Cells to Polymer Demixed Nanotopography. Biomaterials. 23 (14), 2945-2954 (2002).
  18. Gates, B. D., et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105 (4), 1171-1196 (2005).
  19. Yin, Y., Lu, Y., Gates, B., Xia, Y. Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J. Am. Chem. Soc. 123 (36), 8718-8729 (2001).
  20. Tada, Y., et al. Directed Self-Assembly of Diblock Copolymer Thin Films on Chemically-Patterned Substrates for Defect-Free Nano-Patterning. Macromolecules. 41 (23), 9267-9276 (2008).
  21. Cheng, J. Y., Rettner, C. T., Sanders, D. P., Kim, H. C., Hinsberg, W. D. Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20 (16), 3155-3158 (2008).
  22. Colburn, M., et al. Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE. 3676 ((Pt. 1, Emerging Lithographic Technologies III)), 379-389 (1999).
  23. Ahn, S. H., Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20 (11), 2044-2049 (2008).
  24. Vieu, C., et al. Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111-117 (2000).
  25. Nagase, T., Gamo, K., Kubota, T., Mashiko, S. Direct fabrication of nano-gap electrodes by focused ion beam etching. Thin Solid Films. 499 (1-2), 279-284 (2006).
  26. Juodkazis, S., et al. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology. 16 (6), 846 (2005).
  27. Yang, Y., Leong, K. W. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (5), 478-495 (2010).
  28. Yang, Y., Kulangara, K., Sia, J., Wang, L., Leong, K. W. Engineering of a Microfluidic Cell Culture Platform Embedded with Nanoscale Features. Lab Chip. 11 (9), 1638-1646 (2011).
  29. Wang, K., et al. Nanotopographical modulation of cell function through nuclear deformation. Acs Appl. Mater. Inter. 8 (8), 5082-5092 (2016).
  30. Lee, J. N., Park, C., Whitesides, G. M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 75 (23), 6544-6554 (2003).
  31. Yang, Y., Kulangara, K., Lam, R. T. S., Dharmawan, R., Leong, K. W. Effects of Topographical and Mechanical Property Alterations Induced by Oxygen Plasma Modification on Stem Cell Behavior. ACS Nano. 6 (10), 8591-8598 (2012).
  32. Hua, F., et al. Polymer Imprint Lithography with Molecular-Scale Resolution. Nano Lett. 4 (12), 2467-2471 (2004).
  33. Delamarche, E., Schmid, H., Michel, B., Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 9 (9), 741-746 (1997).
check_url/pt/54840?article_type=t

Play Video

Citar este artigo
Wang, K., Leong, K. W., Yang, Y. Expanding Nanopatterned Substrates Using Stitch Technique for Nanotopographical Modulation of Cell Behavior. J. Vis. Exp. (118), e54840, doi:10.3791/54840 (2016).

View Video