Summary

肺癌標的化ナノ粒子と光線力学療法の抗がん効能

Published: December 01, 2016
doi:

Summary

Photodynamic therapy (PDT) is an alternative choice for lung cancer treatment. To increase the therapeutic effect of PDT, lung cancer-targeted nanoparticles combined with chemotherapy were developed. Both in vitro and in vivo anticancer efficacies of PDT with prepared nanoparticles were evaluated.

Abstract

Photodynamic therapy (PDT) is a non-invasive and non-surgical method representing an attractive alternative choice for lung cancer treatment. Photosensitizers selectively accumulate in tumor tissue and lead to tumor cell death in the presence of oxygen and the proper wavelength of light.

To increase the therapeutic effect of PDT, we developed both photosensitizer- and anticancer agent-loaded lung cancer-targeted nanoparticles. Both enhanced permeability and retention (EPR) effect-based passive targeting and hyaluronic-acid-CD44 interaction-based active targeting were applied. CD44 is a well-known hyaluronic acid receptor that is often introduced as a biomarker of non-small cell lung cancer.

In addition, a combination of PDT and chemotherapy is adopted in the present study. This combination concept may increase anticancer therapeutic effects and reduce adverse reactions.

We chose hypocrellin B (HB) as a novel photosensitizer in this study. It has been reported that HB causes higher anticancer efficacy of PDT compared to hematoporphyrin derivatives1. Paclitaxel was selected as the anticancer drug since it has proven to be a potential treatment for lung cancer2.

The antitumor efficacies of photosensitizer (HB) solution, photosensitizer encapsulated hyaluronic acid-ceramide nanoparticles (HB-NPs), and both photosensitizer- and anticancer agent (paclitaxel)-encapsulated hyaluronic acid-ceramide nanoparticles (HB-P-NPs) after PDT were compared both in vitro and in vivo. The in vitro phototoxicity in A549 (human lung adenocarcinoma) cells and the in vivo antitumor efficacy in A549 tumor-bearing mice were evaluated.

The HB-P-NP treatment group showed the most effective anticancer effect after PDT. In conclusion, the HB-P-NPs prepared in the present study represent a potential and novel photosensitizer delivery system in treating lung cancer with PDT.

Introduction

Photodynamic therapy (PDT) is composed of three major factors: photosensitizers, light, and oxygen. PDT is reported as a promising treatment for various cancers3. When the photosensitizers are administered into the cancer patient, they selectively accumulate in the tumor tissues. When the proper wavelength of light is applied, the highly reactive singlet oxygen and other free radicals lead to tumor cell damage4.

Lung cancer was introduced as one of the first applications for PDT in the early 1980s5. PDT provides several advantages in treating lung cancer. Since PDT is a non-invasive and non-surgical treatment, it is an attractive alternative choice for the patients in whom surgical resection is inappropriate.

There have been many challenges to enhance the cancer-targeting efficacy of the photosensitizers. Increasing photosensitizer accumulation in cancer sites and decreasing accumulation in normal tissues are the identical goals for the cancer-targeting studies. A variety of targeted drug delivery systems, such as polymers, liposomes, and nanoparticles are adopted as photosensitizer carriers6-8. In our previous studies, nanoparticles effectively increased the cancer-targeting abilities of the photosensitizers9,10. Nanoparticles are ideal cancer-targeting carriers since they possess both passive and active targeting abilities. The leaky tumor vessels provide opportunity for nano-sized carriers to accumulate easily in tumors, which is well-known as the enhanced permeability and retention (EPR) effect11,12. The interaction between the nanoparticles and the specific receptors on cancer cells enables active cancer targeting. In this study, we prepared hyaluronic acid-based nanoparticles to interact with CD44, the major hyaluronic acid receptor that is overexpressed on lung cancer cells13.

To maximize the anticancer efficacy, a combination of PDT and chemotherapy is adopted in the present study. This combination concept may permit an increased therapeutic effect. Furthermore, decreased doses of both the photosensitizer and the anticancer drug can diminish adverse effects. We selected hypocrellin B (HB) as a novel photosensitizer in the present study. HB is isolated from Chinese medicinal fungus Hypocrella bambuase. Shang et al. reported that HB-based PDT possesses a higher anticancer efficacy when compared to hematoporphyrin derivative-based PDT1. Paclitaxel was selected as the anticancer drug since it has proven to be a potential treatment for various cancers, including lung cancer2.

Herein, we compared the anticancer efficacies of photosensitizer (hypocrellin B, HB) solution, photosensitizer-encapsulated hyaluronic acid-ceramide nanoparticles (HB-NPs), and both photosensitizer- and anticancer agent (paclitaxel)-encapsulated hyaluronic acid-ceramide nanoparticles (HB-P-NPs) after PDT. The in vitro phototoxicity in A549 (human lung adenocarcinoma) cells and the in vivo antitumor efficacy in A549 tumor-bearing mice were evaluated.

Protocol

注:すべての動物実験プロトコルは、盆唐ソウル大病院(BA1308-134 / 072から01)の施設内動物管理使用委員会によって承認されました。 ヒアルロン酸セラミドの1の合成(HACE) 二重蒸留水(DDW)の60ミリリットルでヒアルロン酸の12.21ミリモル(HA)オリゴマー及びテトラn個の -butylammonium水酸化物(TBA)の9.77ミリモルを可溶化します。 30分間撹拌しました。 DS-Y30リン…

Representative Results

私たちは、上記の技術とHB-のNPとHB-P-NPの両方を用意しました。 HB-のNPとHB-P-NPの平均直径はそれぞれ220.9±3.2 nmおよび211.9±1.6nmでした。 光照射(0〜16 J / cm 2)を、続いてPBS、空のNP、HB-のNP、及びHB-P-のNPとのインキュベーションの4時間後のA549細胞の細胞生存率は、光がない。 図1に示されています、 HB-P…

Discussion

波長、パワー、照射時間:この研究の中で最も重要なステップは、適切なレーザー条件を選択されています。特定の光増感剤に適した光の適切な波長は、PDTのために必要です。私たちは、出力電力が多くのパイロット研究に基づいて400ミリワット/ cm 2に設定したもう一つの重要な要因であったヒポクレリンBについて適切であった630 nmのレーザーを使用していました。 400 mWの/ cm 2<…

Declarações

The authors have nothing to disclose.

Acknowledgements

この研究は、助成金なしによってサポートされていました。 SNUBH研究基金から14-2014-017。

著者は、この原稿の彼のプロボノ編集のためにJ.パトリック・バロン、名誉教授、東京大学医科大学と非常勤講師、盆唐ソウル大病院にお世話になっています。

Materials

oligo hyaluronic acid Bioland Co., Ltd. _
DS-Y30 (ceramide 3B; mainly N-oleoyl-phytosphingosine) Doosan Biotech Co., Ltd. _
adipic acid dihydrazide Sigma Aldrich A0638
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide Sigma Aldrich 39391
4-(chloromethyl)benzoyl chloride Sigma Aldrich 270784
Tween 80 Tokyo Chemical Industry Co., Ltd. T0546
syringe filter Sartorius Stedim Biotech GmbH 17762 15 mm, RC, PP, 0.45 µm
triethylamine Sigma Aldrich T0886
Mini-GeBAflex tubes Gene Bio-Application Ltd. D070-12-100
Paclitaxel Taihua Corporations _
RPMI-1640 Gibco Life Technologies, Inc. 11875
Penicillin–streptomycin Gibco Life Technologies, Inc. 15070
Fetal bovine serum Gibco Life Technologies, Inc. 16140071
Celite (Filter agent) Sigma Aldrich 6858 See step 1.4

Referências

  1. Shang, L., Zhou, N., Gu, Y., Liu, F., Zeng, J. Comparative study on killing effect of esophageal cancer cell line between hypocrellin B-photodynamic therapy and hematoporphyrin derivative-photodynamic therapy. Chin J Cancer Prev Treat. 12, 1139-1142 (2005).
  2. Huisman, C., et al. Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res. 8 (2), 596-606 (2002).
  3. Dolmans, D. E., Fukumura, D., Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer. 3 (5), 380-387 (2003).
  4. Pass, H. I. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 85 (6), 443-456 (1993).
  5. Sutedja, T. G., Postmus, P. E. Photodynamic therapy in lung cancer. A review . J. Photochem. Photobiol. 36 (2), 199-204 (1996).
  6. Peng, C. L., Shieh, M. J., Tsai, M. H., Chang, C. C., Lai, P. S. Self-assembled star-shaped chlorin-core poly(epsilon-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials. 29 (26), 3599-3608 (2008).
  7. Chen, B., Pogue, B. W., Hasan, T. Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv. 2 (3), 477-487 (2005).
  8. Lee, S. J., et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 152 (1), 21-29 (2011).
  9. Chang, J. E., et al. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer. J. Photochem. Photobiol. 140, 49-56 (2014).
  10. Chang, J. E., Cho, H. J., Yi, E., Kim, D. D., Jheon, S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. 158, 113-121 (2016).
  11. Wang, A. Z., Langer, R., Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185-198 (2012).
  12. Matsumura, Y., Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46 (12 Pt 1), 6387-6392 (1986).
  13. Penno, M. B., et al. Expression of CD44 in human lung tumors. Cancer Res. 54 (5), 1381-1387 (1994).
  14. Wilkins, R., Kutzner, B., Truong, M., Sanchez-Dardon, J., McLean, J. Analysis of radiation-induced apoptosis in human lymphocytes: Flow cytometry using Annexin V and propidium iodide versus the neutral comet assay. Cytometry. 48 (1), 14-19 (2002).
  15. Bannas, P., et al. Validation of nanobody and antibody based in vivo tumor xenograft NIRF-imaging experiments in mice using ex vivo flow cytometry and microscopy. J Vis Exp. (98), e52462 (2015).
  16. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. (5), (2008).
  17. Lam, S. Photodynamic therapy of lung cancer. Semin Oncol. 21 (6 Suppl 15), 15-19 (1994).
  18. Simone, C. B., et al. Photodynamic therapy for the treatment of non-small cell lung cancer. J Thorac Dis. 4 (1), 63-75 (2012).
check_url/pt/54865?article_type=t

Play Video

Citar este artigo
Chang, J., Cho, H., Jheon, S. Anticancer Efficacy of Photodynamic Therapy with Lung Cancer-Targeted Nanoparticles. J. Vis. Exp. (118), e54865, doi:10.3791/54865 (2016).

View Video