Summary

In vitro Differensiering av Menneskelig CD4 + foxp3 + Induced regulatoriske T-celler (iTregs) fra naive CD4 + T-celler under anvendelse av et TGF-β holdige Protocol

Published: December 30, 2016
doi:

Summary

Denne protokollen beskriver reproduserbar generering og fenotyping av menneskeskapte regulatoriske T-celler (iTregs) fra naive CD4 + T-celler in vitro. Forskjellige protokoller for foxp3 induksjons tillater studiet av spesifikke fenotyper iTreg oppnådd med respektive protokoller.

Abstract

Regulatory T cells (Tregs) are an integral part of peripheral tolerance, suppressing immune reactions against self-structures and thus preventing autoimmune diseases. Clinical approaches to adoptively transfer Tregs, or to deplete Tregs in cancer, are underway with promising first outcomes.

Because the number of naturally occurring Tregs (nTregs) is very limited, studying certain Treg features using in vitro induced Tregs (iTregs) can be advantageous. To date, the best although not absolutely specific protein marker to delineate Tregs is the transcription factor FOXP3. Despite the importance of Tregs including non-redundant roles of peripherally induced Tregs, the protocols to generate iTregs are currently controversial, particularly for human cells. This protocol therefore describes the in vitro differentiation of human CD4+FOXP3+ iTregs from human naïve T cells using a range of Treg-inducing factors (TGF-β plus IL-2 only, or their combination with retinoic acid, rapamycin or butyrate) in parallel. It also describes the phenotyping of these cells by flow cytometry and qRT-PCR.

These protocols result in reproducible expression of FOXP3 and other Treg signature genes and enable the study of general FOXP3-regulatory mechanisms as well as protocol-specific effects to delineate the impact of certain factors. iTregs can be utilized to study various phenotypic aspects as well as molecular mechanisms of Treg induction. Detailed molecular studies are facilitated by relatively large cell numbers that can be obtained.

A limitation for the application of iTregs is the relative instability of FOXP3 expression in these cells compared to nTregs. iTregs generated by these protocols can also be used for functional assays such as studying their suppressive function, in which iTregs induced by TGF-β plus retinoic acid and rapamycin display superior suppressive activity. However, the suppressive capacity of iTregs can differ from nTregs and the use of appropriate controls is crucial.

Introduction

CD4 + CD25 + foxp3 + regulatoriske T-celler (tregs) undertrykke andre immunceller og er kritiske formidlere av perifer toleranse, hindrer autoimmunitet og overdreven betennelse en. Betydningen av Tregs er eksemplifisert ved den humane sykdommen immunodysregulation polyendocrinopathy enteropati X-bundet syndrom (IPEX), i hvilken tap av Tregs på grunn av mutasjoner i `master' Treg transkripsjonsfaktor gaffelhodeboks P3 (foxp3) fører til alvorlig systemisk autoimmun sykdom, dødelig i tidlig alder. Men Tregs fungere som et tveegget sverd i immunsystemet som de kan også hemme anti-tumor immunitet i visse innstillinger 2. Terapeutisk manipulering av treg antall og funksjon er derfor underlagt en rekke kliniske undersøkelser. I kreft, kan uttømming av tregs være ønskelig og noen suksess av kliniske tilnærminger oppmuntrer til videre forskning tre. I autoimmune og inflammatoriske sykdommer, i tillegg til terapeutiske effektene av Tregs i seveRAL mus sykdomsmodeller, nye første i manns forsøk med adoptiv Treg overføring for å hindre graft- versus -host sykdom (GvHD) 4-7 og vurdere sikkerheten i behandling av type 1 diabetes 8 viste svært lovende resultater.

Naturlig forekommende Tregs (nTregs) omfatter thymus-avledet tTregs og perifert indusert pTregs, med ikke-redundante viktige funksjoner i å opprettholde helse 9-11. Men nTreg tallene er begrenset, oppmuntre til komplementær tilnærming som induserer tregs (iTregs) in vitro fra naive T-celle forløpere 12. Fortsatt stabilitet av iTregs, antagelig på grunn av manglende demetylering i den såkalte treg-spesifikke demetylerte region (TSDR) i foxp3 gen locus 13, forblir et problem og flere studier tyder på at in vivo-indusert Tregs er mer 14 stabil.

Til dags dato, foxp3 fortsatt den beste protein mArker for Tregs men det er ikke helt bestemt, fordi menneskekonvensjonelle CD4 + CD25- T-celler forbigående uttrykker middels nivå av foxp3 ved aktivering 15,16. Selv om betydelige fremskritt har blitt gjort i å belyse regulering av foxp3 uttrykk, er fortsatt mye å bli oppdaget med induksjon, stabilitet og funksjon av foxp3 særlig i humane celler. Til tross for forskjeller i nTregs, in vitro indusert foxp3 + CD4 + T-celler kan brukes som et modellsystem for å studere molekylære mekanismer for foxp3 induksjon og som et utgangspunkt for å utvikle protokoller i fremtiden som tillater generering av iTregs som er mer lik den i vivo genererte Tregs, noe som kan være aktuelt for adoptiv overføring strategier i fremtiden.

Det er ingen `gull standard'-protokollen for å indusere humane iTregs, og nåværende protokoller er utviklet basert på å etterligne treg-induserende betingelser in vivo: interleukin 2 (IL-2) Og transformerende vekstfaktor β (TGF-β) signalering er avgjørende for foxp3 induksjon in vivo 17, og all-trans retinsyre (ATRA) – som er produsert in vivo ved tarmassosiert dendrittiske celler – blir ofte brukt for å forbedre foxp3 induksjon in vitro 18 21. Vi har utviklet flere menneskelige Treg-induserende protokoller ved hjelp av smørsyre 22, en gut microbiota-avledet kortkjedet fettsyre som nylig ble vist seg å forsterke murine Treg induksjon 23,24. Vi har også nylig etablert en ny protokoll for generering av iTregs med overlegen undertrykkende funksjon in vitro ved hjelp av en kombinasjon av TGF-β, ATRA og rapamycin 22, sistnevnte er en klinisk godkjent pattedyr målet for rapamycin (mTOR) inhibitor som er kjent for å fremme foxp3 vedlikehold under menneskelig treg utvidelse 25,26.

Denne metoden beskriver reproduserbar ivitro generering av humane CD4 + foxp3 + iTregs ved hjelp av et sett av forskjellige forhold, og deres etterfølgende fenotyping ved flow-cytometri og kvantitativ revers transkripsjon polymerasekjedereaksjon (QRT-PCR) for å avsløre protokoll-spesifikke mønstre av ekspresjon av foxp3 og andre treg signatur molekyler slike som CD25, CTLA-4, EOS, såvel som undertrykkelse av IFN-γ og SATB1 uttrykk 22. De genererte cellepopulasjoner kan anvendes for funksjonelle analyser vedrørende undertrykkende aktivitet eller for molekylære studier, enten om generell foxp3 regulatorer eller for å studere effekter som er spesifikke for visse forbindelser slik som butyrat eller rapamycin. Videre forståelse av molekylære mekanismer som driver Treg differensiering er svært relevant for fremtidige terapeutiske tilnærminger i autoimmunitet eller kreft spesifikt mot molekyler involvert i Treg generasjon og funksjon.

Protocol

Humane perifere mononukleære blodceller (PBMC) ble nylig isolert fra anonymiserte sunn giver buffy coats kjøpt fra Karolinska universitetssykehus, Sverige. Etisk tillatelse for eksperimentene ble innhentet fra Regional Etisk Review Board i Stockholm (Regionala etikprövningsnämnden i Stockholm), Sverige (godkjenningsnummer: 2013 / 1458-1431 / 1). 1. T Cell Isolasjon fra perifert blod PBMC Isolation Pre-lå 15 ml tetthetssentrifugering medium (for eksempel Ficoll) oppløsni…

Representative Results

Figur 1 viser en ordning av den eksperimentelle oppsettet. Figur 2 viser en representativ styre renhet farging for magnetisk isolerte naive CD4 + T-celler og nTregs. F igur 3A viser flowcytometri gating strategi og Figur 3B viser representative foxp3 og CD25 flowcytometri stainings på dag 6 av kultur i henhold til de angitte iTreg eller kontrollfor…

Discussion

Den beskrevne protokollen gjør den robuste induksjon av menneskelig CD4 + foxp3 + iTregs fra menneskelige naive CD4 + T-celler. Det inkluderer en ny protokoll som vi nylig beskrevet, ved hjelp av en kombinasjon av TGF-β, ATRA og rapamycin, for induksjon av iTregs med overlegen in vitro undertrykkende funksjon 22. Sammenlignet med andre publiserte protokoller, er en annen fordel induksjon av forskjellige iTreg populasjoner i parallell med forskjellige protokoller, som muliggjør direkte s…

Declarações

The authors have nothing to disclose.

Acknowledgements

Nina Nagel is gratefully acknowledged for technical assistance during the video shoot and experimental preparation. We thank Eva-Maria Weiss for help with the intracellular FOXP3 staining protocol and Elisabeth Suri-Payer and Nina Oberle for establishing the nTreg isolation protocol. Matilda Eriksson and Peri Noori are acknowledged for laboratory management.

Funding: A.S. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme, the Dr. Åke Olsson Foundation and KI research foundations; A.S. and J.T. were supported by a CERIC (Center of Excellence for Research on Inflammation and Cardiovascular disease) grant, J.T. was supported by Vetenskapsrådet Medicine and Health (Dnr 2011-3264), Torsten Söderberg Foundation, FP7 STATegra, AFA Insurance and Stockholm County Council.

Materials

All-trans retinoic acid Sigma Aldrich R2625-50MG  
anit-human Foxp3-APC clone 236A/E7 eBioscience 17-4777-42
anti-human CD25 microbeads Miltenyi Biotec 130-092-983
anti-human CD25-PE Miltenyi Biotec 130-091-024
anti-human CD28 antibody, LEAF Purified  Biolegend 302914
anti-human CD3 Antibody, LEAF Purified  Biolegend 317315
anti-human CD45RA , FITC Miltenyi Biotec 130-092-247
anti-human CD45RO PE clone UCHL1 BD Biosciences 555493
anti-human CD4-PerCP clone SK3; mIgG1 BD Biosciences 345770
anti-human CD8-eFluor 450 (clone OKT8), mIgG2a eBioscience 48-0086-42 
anti-human CTLA-4 (CD152), clone BNI3, mIgG2ak, Brilliant violet 421 BD Biosciences 562743
anti-human IFN-g FITC clone 4S.B3; mIgG1k eBioscience 11-7319-81 
Brefeldin A-containing solution: GolgiPlug BD Biosciences 555029
cDNA synthesis kit: SuperScript VILO(Reverse transcriptase) cDNA Synthesis Kit Invitrogen 11754-250
Density centrifugation medium: Ficoll-Paque GE healthcare 17-1440-03
DMSO 99,7% Sigma Aldrich D2650-5X5ML
FBS, heat inactivated Invitrogen 10082-147
Fixable Viability Dye, eFluor 780   eBioscience 65-0865-14 or 65-0865-18 
Foxp3 Staining Buffer Set eBioscience 00-5523-00  Caution, contains Paraformaldehyde
Can be also bought in combined kit with antibody; 77-5774-40 Anti-Human Foxp3 Staining Set APC Clone: 236A/E7 Set 
GlutaMAX (200 mM L-alanyl-L-glutamine) Invitrogen 35050-061
human naive CD4 T cell isolation kit II Miltenyi Biotec 130-094-131
nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT
human naive CD4 T cell isolation kit II
nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT,nojavascript&WT
Miltenyi Biotec
130-094-131
Human serum albumin 50 g/l Baxter 1501057
Ionomycin from Streptomyces conglobatus >98% Sigma Aldrich I9657-1MG
MACS LS-columns Miltenyi Biotec 130-042-401
mouse IgG1 K Isotype Control APC Clone: P3.6.2.8.1  eBioscience 17-4714-42 
mouse IgG1 K Isotype Control FITC 50 ug  eBioscience 11-4714-81 
mouse IgG2a isotype control, Brilliant violet 421, clone MOPC-173 BD Biosciences 563464
Pasteur pipet plastic, individually packed Sarstedt 86.1172.001  
PMA PHORBOL 12-MYRISTATE 13-ACETATE Sigma Aldrich P1585-1MG 
Rapamycin EMD (Merck) 553210-100UG
Recombinant Human IL-2, CF R&D 202-IL-050/CF
Recombinant Human TGF-beta 1, CF RnD 240-B-010/CF
RNA isolation kit: RNAqueous-Micro Kit Ambion AM1931  
RPMI 1640 Medium  Invitrogen 72400-054 
Sodium butyrate Sigma Aldrich B5887-250MG 
T cell culture medium: X-Vivo 15 medium, with gentamicin+phenolred Lonza 04-418Q
TaqMan Gene Expression Assay, FOXP3 (Best Coverage)  Applied Biosystems 4331182; assay ID: Hs01085834_m1 Caution, contains Paraformaldehyde
TaqMan Gene Expression Assay, RPL13A (Best Coverage) Applied Biosystems 4351370; assay ID: Hs04194366_g1   Caution, contains Paraformaldehyde
TaqMan Gene Expression Master mix Applied Biosystems 4369514

Referências

  1. Sakaguchi, S. Regulatory T cells: history and perspective. Methods Mol.Biol. 707, 3-17 (2011).
  2. DeLeeuw, R. J., Kost, S. E., Kakal, J. A., Nelson, B. H. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: A critical review of the literature. Clin Can Res. 18 (11), 3022-3029 (2012).
  3. Liu, C., Workman, C. J., Vignali, D. A. A. Targeting Regulatory T Cells in Tumors. FEBS J. , (2016).
  4. Trzonkowski, P., et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+C. Clin. Immunol. 133, 22-26 (2009).
  5. Brunstein, C. G., et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 117, 1061-1070 (2011).
  6. Di Ianni, M., et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 117, 3921-3928 (2011).
  7. Edinger, M., Hoffmann, P. Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr. Opin. Immunol. 23, 679-684 (2011).
  8. Bluestone, J. A., et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Transl Med. 7 (315), 189 (2015).
  9. Haribhai, D., et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J. Immunol. 182, 3461-3468 (2009).
  10. Haribhai, D., et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 35, 109-122 (2011).
  11. Abbas, A. K., et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat.Immunol. 14, 307-308 (2013).
  12. Curotto de Lafaille, M. A., Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor. Immunity. 30, 626-635 (2009).
  13. Huehn, J., Polansky, J. K., Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage. Nat. Rev. Immunol. 9, 83-89 (2009).
  14. Schmitt, E. G., Williams, C. B. Generation and function of induced regulatory T cells. Front Immunol. 4, 152 (2013).
  15. Pillai, V., Ortega, S. B., Wang, C. K., Karandikar, N. J. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin.Immunol. 123, 18-29 (2007).
  16. Wang, J., Ioan-Facsinay, A., vander Voort, E. I. H., Huizinga, T. W., Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129-138 (2007).
  17. Josefowicz, S. Z., Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity. 30, 616-625 (2009).
  18. Sun, C. M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J.Exp.Med. 204, 1775-1785 (2007).
  19. Coombes, J. L., et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757-1764 (2007).
  20. Kang, S. G., Lim, H. W., Andrisani, O. M., Broxmeyer, H. E., Kim, C. H. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J. Immunol. 179, 3724-3733 (2007).
  21. Mucida, D., et al. Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity. 30, 471-472 (2009).
  22. Schmidt, A., Eriksson, M., Shang, M. -. M., Weyd, H., Tegnér, J. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate. PloS one. 11 (2), 0148474 (2016).
  23. Furusawa, Y., Obata, Y. regulatory T cells. Nature. 504, 446-450 (2013).
  24. Arpaia, N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504, 451-455 (2013).
  25. Battaglia, M., et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177, 8338-8347 (2006).
  26. Hippen, K. L., et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci. Transl. Med. 3, 41 (2011).
  27. Schmidt, A., et al. Human macrophages induce CD4(+)Foxp3(+) regulatory T cells via binding and re-release of TGF-β. Immunol cell biol. , (2016).
  28. Baron, U., et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378-2389 (2007).
  29. Schmidt, A., et al. Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-kappaB, and NFAT signaling in conventional T cells. Sci. Signal. 4, 90 (2011).
  30. Ohkura, N., et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 37, 785-799 (2012).
  31. Hill, J. A., et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity. 29, 758-770 (2008).
  32. Yang, R., et al. Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity. 43 (2), 251-263 (2015).
  33. Yue, X., Trifari, S., et al. Control of Foxp3 stability through modulation of TET activity. The Journal of experimental medicine. 213 (3), 377-397 (2016).
  34. Sasidharan Nair, V., Song, M. H., Oh, K. I. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. J Immunol. 196 (5), 2119-2131 (2016).
  35. Geiger, T. L., Tauro, S. Nature and nurture in Foxp3 + regulatory T cell development, stability, and function. Hum Immunol. 73 (3), 232-239 (2012).
  36. Gu, J., et al. TGF-β-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease by suppressing expansion and killing of effector CD8+ cells. J Immunol. 193 (7), 3388-3397 (2014).
  37. Brusko, T. M., Hulme, M. A., Myhr, C. B., Haller, M. J., Atkinson, M. A. Assessing the In Vitro Suppressive Capacity of Regulatory T Cells. Immunol Invest. 36 (5-6), 607-628 (2007).
  38. McMurchy, A. N., Levings, M. K. Suppression assays with human T regulatory cells: a technical guide. Eur J immunol. 42 (1), 27-34 (2012).
  39. Mutis, T., et al. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice. Clin cancer res. 12 (18), 5520-5525 (2006).
  40. Tran, D. Q. In vitro suppression assay for functional assessment of human regulatory T cells. Meth mol biol. 979, 199-212 (2013).
  41. Oberle, N., Eberhardt, N., Falk, C. S., Krammer, P. H., Suri-Payer, E. Rapid Suppression of Cytokine Transcription in Human CD4+CD25 T Cells by CD4+Foxp3+ Regulatory T Cells: Independence of IL-2 Consumption, TGF-beta, and Various Inhibitors of TCR Signaling. J. Immunol. 179, 3578-3587 (2007).
  42. Shevach, E. M., Thornton, A. M. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259, 88-102 (2014).
check_url/pt/55015?article_type=t

Play Video

Citar este artigo
Schmidt, A., Éliás, S., Joshi, R. N., Tegnér, J. In Vitro Differentiation of Human CD4+FOXP3+ Induced Regulatory T Cells (iTregs) from Naïve CD4+ T Cells Using a TGF-β-containing Protocol. J. Vis. Exp. (118), e55015, doi:10.3791/55015 (2016).

View Video