Summary

Unicellulaire profil d'expression génique utilisant FACS et qPCR avec les normes internes

Published: February 25, 2017
doi:

Summary

We describe a method to sort single mammalian cells and to quantify the expression of up to 96 target genes of interest in each cell. This method includes the use of internal qPCR standards to enable the estimation of absolute transcript counts.

Abstract

Gene expression measurements from bulk populations of cells can obscure the considerable transcriptomic variation of individual cells within those populations. Single-cell gene expression measurements can help assess the role of noise in gene expression, identify correlations in the expression of pairs of genes, and reveal subpopulations of cells that respond differently to a stimulus. Here, we describe a procedure to measure the expression of up to 96 genes in single mammalian cells isolated from a population growing in tissue culture. Cells are sorted into lysis buffer by fluorescence-activated cell sorting (FACS), and the mRNA species of interest are reverse-transcribed and amplified. Gene expression is then measured using a microfluidic real-time PCR machine, which performs up to 96 qPCR assays on up to 96 samples at a time. We also describe the generation and use of PCR amplicon standards to enable the estimation of the absolute number of each transcript. Compared with other methods of measuring gene expression in single cells, this approach allows for the quantification of more distinct transcripts than RNA FISH at a lower cost than RNA-Seq.

Introduction

Les cellules individuelles dans une population peuvent montrer des réponses très différentes à un stimulus uniforme physiologique 1, 2, 3, 4. La variation génétique des cellules dans une population est un mécanisme pour cette série de réactions, mais il existe également plusieurs facteurs non génétiques qui peuvent augmenter la variabilité des réponses, même dans une population clonale de cellules. Par exemple, les niveaux de différentes protéines et d'autres molécules de signalisation importantes peuvent varier sur une base cellule par cellule, donnant lieu à des variations dans les profils d'expression des gènes en aval. En outre, l' activation du gène peut se produire dans des éclats de courte durée des relevés de notes 5, 6 qui peuvent être limités à un nombre relativement faible de transcrits par rafale 7, 8, 9. Telstochasticité dans l' activation de gène peut grandement contribuer à la variabilité des réponses biologiques et peut fournir un avantage sélectif sur les micro – organismes 10 dans des cellules mammifères et 1, 2 répondant à un stimulus physiologique. En raison de ces deux sources génétiques et non génétiques de la variation, le profil d'expression génique d'une cellule donnée en réponse à un stimulus peut être très différente du profil d'expression génique moyenne obtenue à partir de la mesure de la réponse en vrac. Déterminer la mesure dans laquelle les cellules individuelles présentent une grande variabilité dans la réponse à un stimulus nécessite des techniques pour l'isolement de cellules individuelles, la mesure des niveaux d'expression des transcrits d'intérêt, et l'analyse informatique des données d'expression en résultant.

Il existe plusieurs approches pour le dosage de l'expression des gènes dans des cellules individuelles, couvrant un large éventail de coûts, nombre de transcrits sondé, etprécision de quantification. Par exemple, une seule cellule ARN-Seq offre une grande profondeur de la couverture de la transcription et de la capacité à quantifier des milliers de transcriptions distinctes pour les gènes les plus fortement exprimé dans des cellules individuelles; Cependant, le coût associé à une telle profondeur de séquençage peut être prohibitif, même si les coûts continuent de diminuer. A l' inverse, une seule molécule d' ARN hybridation fluorescente in situ (smRNA FISH) propose une quantification précise des transcriptions pour encore faible expression de gènes à un coût raisonnable par gène d'intérêt; Cependant, seul un petit nombre de gènes cibles peut être testée dans une cellule donnée par cette approche. tests basés sur la PCR quantitative, décrits dans le présent protocole, fournissent un juste milieu entre ces techniques. Ces tests utilisent une machine microfluidique PCR en temps réel pour quantifier jusqu'à 96 transcriptions d'intérêt à un moment dans un maximum de 96 cellules. Bien que chacune des méthodes mentionnées ci-dessus a des coûts matériels nécessaires, le coût de tout essai qPCR individuelle est relativementfaible. Ce protocole est adapté de celui suggéré par le fabricant d'une machine microfluidique PCR en temps réel (Protocole ADP 41, Fluidigm). Pour permettre l'estimation du nombre absolu de chaque transcription dans une approche basée sur la PCR, nous avons élargi le protocole à utiliser des contrôles internes de préparées amplicons de gènes cibles qui peuvent être utilisés dans de multiples expériences.

A titre d'exemple de cette technique, la quantification de l'expression des gènes régulés par le suppresseur de tumeur p53 dans les cellules MCF-7 de carcinome du sein humain 11 est décrit. Les cellules sont contestées avec un agent chimique qui induit ADN cassures double brin. Des études antérieures ont montré que la réponse de p53 à l' ADN cassures double brin présente une grande hétérogénéité dans des cellules individuelles, tant en termes de niveaux de p53 12 et dans l'activation de gènes cibles distinctes 11. En outre, p53 régule l'expression de plus de 100bien caractérisé des gènes cibles impliqués dans de nombreuses voies en aval, y compris l' arrêt du cycle cellulaire, l' apoptose et la sénescence 13, 14. Puisque la réponse médiée par p53 dans chaque cellule est à la fois complexe et variable, l'analyse des avantages du système à partir d'une approche dans laquelle près de 100 gènes cibles peut être sondé simultanément dans des cellules individuelles, telles que celles décrites ci-dessous. Avec de légères modifications (telles que les méthodes alternatives pour l'isolement de cellules isolées et une lyse), le protocole peut être facilement adapté pour étudier un large éventail de types de cellules de mammifère, des transcriptions et des réponses cellulaires.

Avec une préparation préalable appropriée, une ronde de tri cellulaire et la mesure de l'expression du gène peut être réalisée selon ce protocole sur une période de trois jours. Le calendrier suivant est proposé: à l'avance, sélectionner les transcriptions d'intérêt, d'identifier et de valider les paires d'amorces qui amplifient l'ADNc de ceux transcrIPTS, et de préparer les normes et mélanges d'amorces en utilisant ces amorces. Le jour 1, après un traitement cellulaire, la récolte et de trier les cellules, effectuer la transcription inverse et l'amplification de cible spécifique, et de traiter les échantillons avec une exonucléase pour éliminer les amorces non constituées en société. Le jour 2, effectuer un contrôle de qualité sur les cellules triées en utilisant qPCR. Enfin, le jour 3, mesurer l'expression des gènes dans les cellules triées en utilisant microfluidique qPCR. La figure 1 résume les différentes étapes.

Protocol

1. Préparation à l'avance Sélectionnez jusqu'à 96 gènes d'intérêt dont l'expression sera mesurée. REMARQUE: Au moins un de ces gènes devrait être un «gène de ménage», comme ACTB ou GAPDH, qui est connu pour être exprimé à un niveau relativement élevé et constant dans les conditions utilisées dans l'expérience. Ce gène sera utilisé pour identifier positivement les puits triés (étape 8.1) et des échantillons amplifiés (étape 10.1). NOTE: Pour l'e…

Representative Results

Un aperçu général du protocole est représentée sur la figure 1, comprenant des étapes pour le traitement des cellules, l'isolement des cellules isolées par FACS, la génération et la pré-amplification des banques d'ADNc à partir de lysats de cellule unique, la confirmation des banques d'ADNc monocellulaires dans les puits triées et la mesure de l'expression des gènes par PCR quantitative. <p class="jove_content" fo:keep-together.within-pag…

Discussion

Nous avons présenté un procédé pour isoler des cellules de mammifères individuels à partir d'une population de cellules adhérentes cultivées en culture et pour le dosage de l'expression d'environ 96 gènes dans chaque cellule. Une bonne préparation préalable est essentielle pour que cette méthode fonctionne bien. En particulier, la conception et les tests paires d'amorces spécifiques pour les transcriptions d'intérêt (étapes 1,2-1,3) prennent du temps, mais d'importantes étapes, c…

Declarações

The authors have nothing to disclose.

Acknowledgements

Nous tenons à remercier V. Kapoor dans le CCR ETIB cytométrie de flux de base pour son aide dans l'exécution du tri cellulaire au cours du développement de ce protocole. Nous remercions également M. l'Unité CCR LP Molecular Diagnostics Raffeld et et J. Zhu et le NHLBI séquençage de l'ADN et la génomique de base pour leur aide dans l'exécution de la qPCR lors de l'élaboration de ce protocole. Cette recherche a été soutenue par le programme intra-muros des NIH.

Materials

RNeasy Plus Mini Kit Qiagen 74134
High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor ThermoFisher 4374966
Phusion High-Fidelity DNA Polymerase New England BioLabs M0530S
QIAquick Gel Extraction Kit Qiagen 28704
Quant-iT High-Sensitivity dsDNA Assay Kit ThermoFisher Q33120 
2.0-mL low adhesion microcentrifuge tubes USA Scientific 1420-2600
DNA Suspension Buffer Teknova T0221
Axygen 0.2-mL Maxymum Recovery Thin Wall PCR Tubes Corning PCR-02-L-C
GE 96.96 Dynamic Array DNA Binding Dye Sample & Assay Loading Reagent Kit Fluidigm 100-3415
HyClone RPMI 1640 media GE Healthcare Life Sciences SH30027.01
Fetal Bovine Serum, Certified (US) ThermoFisher 16000-044
Antibiotic-Antimycotic Solution Corning 30-004-CI
Neocarzinostatin Sigma N9162
ELIMINase Decon Labs 1101
SUPERase-In ThermoFisher AM2696
CellsDirect One-Step qRT-PCR Kit ThermoFisher 11753500
E. coli DNA Affymetrix 14380 10 MG
ThermalSeal Sealing Film, Sterile Excel Scientific STR-THER-PLT
BD FACSAria IIu BD Biosciences
HyClone Trypsin 0.05% GE Healthcare Life Sciences SH30236.01
PBS, 1x Corning 21-040-CV
Falcon 40µm Cell Strainer Corning 352340
Exonuclease I New England BioLabs M0293S
SsoFast EvaGreen Supermix with Low ROX Bio-Rad 172-5210
96.96 Dynamic Array IFC for Gene Expression (microfluidic qPCR chip) Fluidigm BMK-M-96.96
IFC Controller HX (loading machine) Fluidigm
BioMark or BioMark HD (microfluidic qPCR machine) Fluidigm
Real-Time PCR Analysis software  Fluidigm
MATLAB software MathWorks

Referências

  1. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N., Altan-Bonnet, G. Variability and Robustness in T Cell Activation from Regulated Heterogeneity in Protein Levels. Science. 321 (5892), 1081-1084 (2008).
  2. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 459 (7245), 428-432 (2009).
  3. Geva-Zatorsky, N., Rosenfeld, N., et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2 (1), (2006).
  4. Colman-Lerner, A., Gordon, A., et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature. 437 (7059), 699-706 (2005).
  5. Chong, S., Chen, C., Ge, H., Xie, X. S. Mechanism of Transcriptional Bursting in Bacteria. Cell. 158 (2), 314-326 (2014).
  6. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., Tyagi, S. Stochastic mRNA Synthesis in Mammalian Cells. PLoS Biol. 4 (10), e309+ (2006).
  7. Senecal, A., Munsky, B., et al. Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Rep. 8 (1), 75-83 (2014).
  8. Dey, S. S., Foley, J. E., Limsirichai, P., Schaffer, D. V., Arkin, A. P. Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Mol. Syst. Biol. 11 (5), 806+ (2015).
  9. Dar, R. D., Razooky, B. S., et al. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc. Natl. Acad. Sci. U.S.A. 109 (43), 17454-17459 (2012).
  10. Thattai, M., van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genética. 167 (1), 523-530 (2004).
  11. Porter, J. R., Fisher, B. E., Batchelor, E. p53 Pulses Diversify Target Gene Expression Dynamics in an mRNA Half-Life-Dependent Manner and Delineate Co-regulated Target Gene Subnetworks. Cell Syst. 2 (4), 272-282 (2016).
  12. Lahav, G., Rosenfeld, N., et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36 (2), 147-150 (2004).
  13. Levine, A. J., Oren, M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer. 9 (10), 749-758 (2009).
  14. Riley, T., Sontag, E., Chen, P., Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9 (5), 402-412 (2008).
  15. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T. L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 13 (1), 134 (2012).
  16. . . PCR Technologies: A Technical Guide. , (2014).
  17. Sambrook, J., Russell, D. W. . Molecular Cloning: A Laboratory Manual. , (2001).
  18. Batchelor, E., Mock, C. S., Bhan, I., Loewer, A., Lahav, G. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol. Cell. 30 (3), 277-289 (2008).
  19. . . Flow Cytometry: Principles and Applications. , (2007).
  20. . . Real-time PCR. , (2006).
  21. Song, L., Langfelder, P., Horvath, S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinf. 13 (1), 328 (2012).
  22. Margolin, A. A., Nemenman, I., et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinf. 7 (Suppl 1), (2006).
  23. Haff, L. A. Improved quantitative PCR using nested primers. PCR Methods Appl. 3 (6), 332-337 (1994).
  24. Hashimshony, T., Senderovich, N., et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).
  25. Ronander, E., Bengtsson, D. C., Joergensen, L., Jensen, A. T. R., Arnot, D. E. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH). J. Vis. Exp. (68), e4073 (2012).
  26. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods. 5 (10), 877-879 (2008).
  27. Lubeck, E., Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods. 9 (7), 743-748 (2012).
  28. Battich, N., Stoeger, T., Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods. 10 (11), 1127-1133 (2013).
check_url/pt/55219?article_type=t

Play Video

Citar este artigo
Porter, J. R., Telford, W. G., Batchelor, E. Single-cell Gene Expression Profiling Using FACS and qPCR with Internal Standards. J. Vis. Exp. (120), e55219, doi:10.3791/55219 (2017).

View Video