Summary

测量神经肌肉接头功能

Published: August 06, 2017
doi:

Summary

(诸多) 神经肌肉接头功能评估可以提供有关肌肉和神经之间的通信的基本信息。在这里,我们描述一项议定书,全面评估的诸多和肌肉功能使用两种不同的肌肉神经制剂,即比目鱼坐骨神经和膈肌膈。

Abstract

学习运动神经元和肌肉之间的通信受损,老化和萎缩侧索硬化 (ALS) 等疾病时,神经肌肉接头 (诸多) 功能发挥了关键作用。在这里,我们描述了一个实验性的协议,可以用于衡量诸多功能相结合的电刺激的两种类型: 直接肌肉膜刺激和通过神经刺激。对这些两不同刺激的肌肉反应的比较可以帮助定义,一级功能,在诸多导致肌肉功能下降的潜在变化。

Ex vivo筹备工作适合于严谨的研究。在这里,我们描述密集的协议来衡量的肌肉和诸多功能为比目鱼坐骨神经制备和膈肌膈神经编写几个参数。议定书 》 持续约 60 分钟,进行不间断地定制抽搐动力学性质、 力频率关系的肌肉和神经的刺激和两个参数特定于诸多功能,即神经递质失败和 intratetanic 疲劳的措施的软件。这种方法用于检测损害比目鱼肌和膈膜肌肉神经制剂中通过使用 SOD1G93A转基因小鼠,ALS 无所不在 overexpresses 突变体的抗氧化剂酶超氧化物歧化酶 1 (SOD1) 实验模型。

Introduction

神经肌肉接头 (诸多) 是由肌肉纤维运动终板和运动神经元轴突末端之间的连接形成化学突触。诸多已被证明至关重要的作用,当肌肉和神经之间的通信是受损,发生在老化或萎缩侧索硬化 (ALS)。肌肉和神经沟通双向方式12,能够衡量诸多缺陷分别从肌肉缺损可提供其病理相互作用的新见解。事实上,这个功能的评价可能有助于评估是否形态或生化改建减少神经传递信号的功能。

作为间接测量的诸多功能,提出了肌肉收缩反应诱发神经刺激和诱发其膜的直接刺激同一块肌肉的反应的比较。事实上,自膜刺激通过传递神经传递信号,任何两个收缩反应的差异可归因于诸多的变化。这种方法已经被广泛提出大鼠34567,并也用于在鼠标模型89101112上收集信息。

在这里,我们描述详细的消费税和测试两种肌肉神经制剂,即的比目鱼坐骨神经和膈肌膈筹备工作的过程。使用定制软件,我们设计了一个连续的测试协议,结合测量的几个重要参数表征诸多和肌肉的功能,从而产生诸多损害综合评价分别从那肌肉。特别是,议定书 》 的措施抽搐力、 肌肉动力学、 直接力频率曲线和神经刺激,神经递质失败13射击和破伤风的频率,和 intratetanic 疲劳7

Protocol

All the animal experiments were approved by the ethics committee of Sapienza University of Rome-Unit of Histology and Medical Embryology and were performed in accordance with the current version of the Italian Law on the Protection of Animals. 1. Experimental set-up Set-up the experimental system composed of 1 actuator/transducer, 2 stimulators, 1 in-vitro muscle apparatus, 1 preparatory tissue bath, 1 suction electrode, 1 digital oscilloscope, 1 stereomicroscope, 1 cold l…

Representative Results

我们描述了议定书 》 提供了几种神经肌肉疾病或衰老骨骼肌功能失神经支配有关的信息。这个协议可以用于确定是否 (以及,如果是这样,在哪个层面) 肌肉变化是发生在本身的肌肉或神经肌肉传递的选择性变化。如下图所示的数据是工作的以前由我们组18,肌萎缩侧索硬化疾病20结束阶段 SOD1G93A转基因小鼠模型上进行的结果…

Discussion

上述实验协议提供一个理想的测量和识别任何功能的改变发生在肌肉中直接或间接在神经肌肉接头处一级途径。由于这项技术基于间接测量的诸多功能,它不能用于建立与形态学变化或与生化指标的变化,是否有关任何缺陷。与此相反的是,它提供确定是否任何形态或生化改建有减少神经递质信号功能的有效途径。然而,力测量完成后,肌肉可以从浴、 涂抹、 在最佳长度固定,,包围嵌入化合?…

Declarações

The authors have nothing to disclose.

Acknowledgements

在作者的实验室的工作被支持基金会罗姆人和节目 (给予。GGP14066)。

Materials

Dual-Mode Lever System  Aurora Scientific Inc. 300B actuator/transducer
High-Power Bi-Phase Stimulator  Aurora Scientific Inc. 701B pulse stimulator (nerve)
High-Power Bi-Phase Stimulator  Aurora Scientific Inc. 701C pulse stimulator (muscle)
In vitro Muscle Apparatus  Aurora Scientific Inc. 800A
Preparatory tissue bath Radnoti 158400
Monopolar Suction Electrode A-M Systems 573000 with a home-made reference 
Oscilloscope  Tektronix TDS2014
Stereomicroscope Nikon SMZ 800
Cold light illuminator  Photonic Optics PL 3000
Acquisition board National Instruments NI PCIe-6353
Connector block National Instruments NI 2110
Personal computer AMD Phenom II x4 970 Processor 3.50 Ghz with Windows 7
LabView 2012 software National Instruments
Krebs-Ringer Bicarbonate Buffer  Sigma-Aldrich K4002  physiological buffer
Sodium bicarbonate Sigma-Aldrich S5761 
Calcium chloride CaCl2 Sigma-Aldrich C4901 anhydrous, powder, ≥97%
Potassium dihydrogen phosphate KH₂PO₄ AnalaR 7778-77-0
Magnesium sulphate MgSO₄ AnalaR 7487-88-9
Buffer HEPES Sigma-Aldrich H3375 ≥99.5% (titration)
Dishes 60mm x 15mm Falcon 353004 Polystyrene
Silicone Sylgard  184 Silicone  Elastomer Kit  0.5Kg.
Thermostat Dennerle DigitalDuomat 1200
Pump Newa Mini MN 606 for aquarium
Heat resistance Thermocable Lucky Reptile 61403-1 50/60Hz 50W
Bucket any 10 liters Polypropylene
O2 + 5%CO2 siad Mix gas
#5 Forceps  Fine Science Tools 11252-20 2 items
Spring Scissors – 8 mm Blades Fine Science Tools 15024-10 nerve excision
Sharp Scissors  Fine Science Tools  14059-11 muscle removal
Delicate Scissors Wagner 02.06.32 external of the animal
Student Scalpel Handle #3 Fine Science Tools  91003-12 
Scalpel Blades #10 Fine Science Tools  10010-00
Scalpel Blades #11 Fine Science Tools  10011-00
nylon wire Ø0.16 mm any

Referências

  1. Dadon-Nachum, M., Melamed, E., Offen, D. The "dying-back" phenomenon of motor neurons in ALS. J Mol Neurosci. 43 (3), 470-477 (2011).
  2. Dobrowolny, G., et al. Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity. Cell Metab. 8 (5), 425-436 (2008).
  3. Mantilla, C. B., Zhan, W. Z., Sieck, G. C. Neurotrophins improve neuromuscular transmission in the adult rat diaphragm. Muscle Nerve. 29 (3), 381-386 (2004).
  4. Prakash, Y. S., Miyata, H., Zhan, W. Z., Sieck, G. C. Inactivity-induced remodeling of neuromuscular junctions in rat diaphragmatic muscle. Muscle Nerve. 22 (3), 307-319 (1999).
  5. Sieck, D. C., Zhan, W. Z., Fang, Y. H., Ermilov, L. G., Sieck, G. C., Mantilla, C. B. Structure-activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions. Respir Physiol Neurobiol. 180 (1), 88-96 (2012).
  6. Van Lunteren, E., Moyer, M. Effects of DAP on diaphragm force and fatigue, including fatigue due to neurotransmission failure. J Appl Physiol. 81 (5), 2214-2220 (1996).
  7. Van Lunteren, E., Moyer, M., Kaminski, H. J. Adverse effects of myasthenia gravis on rat phrenic diaphragm contractile performance. J Appl Physiol. 97 (3), 895-901 (2004).
  8. Lee, Y., Mikesh, M., Smith, I., Rimer, M., Thompson, W. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol. 356 (2), 432-444 (2011).
  9. Personius, K. E., Sawyer, R. P. Variability and failure of neurotransmission in the diaphragm of mdx mice. Neuromuscular Disord. 16 (3), 168-177 (2006).
  10. Röder, I. V., Petersen, Y., Choi, K. R., Witzemann, V., Hammer, J. A., Rudolf, R. Role of myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS ONE. 3 (12), e3871 (2008).
  11. Chevessier, F., et al. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet. 17 (22), 3577-3595 (2008).
  12. Farchi, N., Soreq, H., Hochner, B. Chronic acetylcholinesterase overexpression induces multilevelled aberrations in mouse neuromuscular physiology. J Physiol. 546 (1), 165-173 (2002).
  13. Kuei, J. H., Shadmehr, R., Sieck, G. C. Relative contribution of neurotransmission failure to diaphragm fatigue. J Appl Physiol (Bethesda, Md: 1985). 68 (1), 174-180 (1990).
  14. Del Prete, Z., Musarò, A., Rizzuto, E. Measuring mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal muscle. Ann Biomed Eng. 36 (7), 1281-1290 (2008).
  15. Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., Brooks, S. V., Faulkner, J. A. Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol. 535 (2), 591-600 (2001).
  16. Brooks, S. V., Faulkner, J. A. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 404, 71-82 (1988).
  17. Lynch, G. S., Hinkle, R. T., Faulkner, J. A. Force and power output of diaphragm muscle strips from mdx and control mice after clenbuterol treatment. Neuromuscul Disord. 11 (2), 192-196 (2001).
  18. Rizzuto, E., Pisu, S., Musar, A., Del Prete, Z. Measuring Neuromuscular Junction Functionality in the SOD1 G93A Animal Model of Amyotrophic Lateral Sclerosis. Ann Biomed Eng . 43, (2015).
  19. Soliani, L. . Manuale di statistica per la ricerca e la professione statistica univariata e bivariata parametrica e non-parametrica per le discipline ambientali e biologiche. , (2004).
  20. Gurney, M. E., Pu, H., et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (New York, N.Y). 264 (5166), 1772-1775 (1994).
check_url/pt/55227?article_type=t

Play Video

Citar este artigo
Rizzuto, E., Pisu, S., Nicoletti, C., Del Prete, Z., Musarò, A. Measuring Neuromuscular Junction Functionality. J. Vis. Exp. (126), e55227, doi:10.3791/55227 (2017).

View Video