Summary

Brug zebrafisk modeller af human influenza A-virus infektioner at Screen antivirale lægemidler og karakterisere værtsimmunsystem Cell Responses

Published: January 20, 2017
doi:

Summary

Systemic and localized zebrafish infection models for human influenza A virus are demonstrated. Using a systemic infection model, zebrafish can be used to screen antiviral drugs. Using a localized infection model, zebrafish can be used to characterize host immune cell responses.

Abstract

Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.

Introduction

Ifølge World Health Organization (WHO), influenzavirus inficere 5-10% af voksne og 20-30% af børn årligt og forårsage 3-5 millioner tilfælde af alvorlig sygdom og op til 500.000 dødsfald på verdensplan en. Årlige vaccinationer mod influenza forblive den bedste mulighed for at forebygge sygdom. Indsatsen som WHO globale handlingsplan har øget sæsonbetinget vaccine brug, vaccine produktionskapacitet, og forskning og udvikling i mere potente vaccine strategier for at reducere sygelighed og dødelighed i forbindelse med årstidens influenzaudbrud 2. Antivirale lægemidler som neuraminidasehæmmere (f.eks Zanamivir og Oseltamivir) er tilgængelige i nogle lande og har vist sig effektive i formildende symptomer, når det gives inden for de første 48 timer af debut 3, 4, 5. Trods den globale indsats, inddæmning af sæsoninfluenza outbreaks bliver en vældig udfordring på dette tidspunkt, som influenzavirus antigen drift ofte overstiger nuværende evner at tilpasse sig den skiftende virussets genom 6. Vaccine strategier rettet mod nye virusstammer skal udvikles på forhånd og er undertiden gøres mindre end optimalt effektive på grund af uforudsete ændringer i de typer af stammer, der i sidste ende dominerer i en influenza sæson. Af disse grunde er der et klart behov for at udvikle alternative terapeutiske strategier for indeholdende infektioner og reducere dødelighed. Ved at opnå en bedre forståelse af vært-virus interaktion, kan det være muligt at udvikle nye anti-influenza-medicin og adjuvans terapier 7, 8.

Den menneskelige vært-influenza A-virus (IAV) interaktion er kompleks. Adskillige dyremodeller for humane IAV infektion er blevet udviklet med henblik på at få indsigt i vært-virus interaktion, herunding mus, marsvin, bomuldsrotter, hamstere, fritter, og makakaber 9. Samtidig med vigtige data, har øget forståelsen af ​​værten-IAV dynamik, hver model organisme besidder betydelige ulemper, der skal overvejes, når du forsøger at oversætte resultaterne i human medicin. For eksempel mus, som er den mest udbredte model, ikke let udvikle IAV-induceret infektion symptomer, når inficeret med human influenzaisolater 9. Dette er fordi mus mangler den naturlige tropisme for human influenza isolater siden muse epitelceller udtrykker a-2,3 sialinsyrebindinger stedet for α-2,6 sialinsyrebindinger udtrykt på humane epitelceller 10. Hæmagglutininet proteiner til stede i human IAV isolater positivt binde og indtast værtsceller bærende a-2,6 sialinsyrebindinger gennem receptor-medieret endocytose 9, 11, </sop> 12, 13. Som følge heraf er det nu accepteret, at ved udviklingen musemodeller for human influenza, skal der drages omsorg for at parre den passende stamme af mus med den passende stamme af influenza for at opnå sygdomsfænotyper der rekapitule- aspekter af den menneskelige sygdom. I modsætning hertil epitelceller i de øvre luftveje af fritter besidder a-2,6 sialinsyrebindinger der ligner humane celler 14. Inficerede fritter deler mange af de patologiske og kliniske træk observeret i humane sygdom, herunder sygdomsfremkaldende og overførbarhed af menneskelige og aviær influenza-virus 14, 15. De er også meget modtagelige for vaccine effektivitetsundersøgelserne. Ikke desto mindre er ilder model for human influenza har flere ulemper primært relateret til deres størrelse og omkostningerne ved dyrehold, der gør erhvervelse af statistisk signifisentlige data udfordrende. Derudover har fritter tidligere viste forskelle i farmakokinetik, biotilgængelighed og toksicitet, der gør testning af effektiviteten vanskelig. For eksempel, fritter udviser toksicitet over for M2 ionkanalen inhibitor amantadin 16. Det er således klart, at i at vælge en dyremodel til at undersøge spørgsmål om humane IAV infektioner, er det vigtigt at overveje sine iboende fordele og begrænsninger, samt det aspekt af vært-virus interaktion, der er under undersøgelse.

Den zebrafisk, Danio rerio, er en dyremodel, der giver unikke muligheder for at undersøge mikrobiel infektion, vært immunreaktion, og potentielle lægemiddelterapier 17, 18, 19, 20, 21, 22, 23, <sup class = "xref"> 24, 25, 26, 27, 28. Tilstedeværelsen af α-2,6-bundne sialinsyrer på overfladen af celler i zebrafisk foreslog sin modtagelighed for IAV, der blev bekræftet i infektionsstudier og afbildes in vivo ved anvendelse af en fluorescerende reporter stamme af IAV 19. I IAV-inficerede zebrafisk, forøget ekspression af de antivirale ifnphi1 og mxa udskrifter indikerede, at en medfødt immunrespons var blevet stimuleret, og patologi vises af IAV-inficerede zebrafisk, herunder ødem og ødelagt væv, var den samme som observeret i influenzainfektioner menneskelige . Endvidere IAV antivirale neuraminidasehæmmer Zanamivir begrænset mortalitet og reduceret viral replikation i zebrafisk 19.

I denne rapport, en protokol for at indlede systemetic IAV infektioner i zebrafisk embryoner er beskrevet. Brug Zanamivir ved klinisk relevante doser som en proof-of-princippet er nytten af ​​denne zebrafisk IAV infektion model for screening forbindelser til antiviral aktivitet demonstreret. Desuden er en protokol til at frembringe et lokaliseret, epitelial IAV infektion i zebrafisk svømme blære, et organ, der anses for at være anatomisk og funktionelt er analog med den mammale lunge 21, 29, 30, 31, beskrives. Brug af denne lokaliseret IAV infektion model, kan neutrofil rekruttering til infektionsstedet spores, således undersøgelser af den rolle af neutrofil biologi i IAV infektion og inflammation. Disse zebrafisk modeller supplere eksisterende dyremodeller for humane IAV infektioner og er særligt nyttige til afprøvning af små molekyler og immune celleresponser på grund af muligheden for øget sTATISTISK effekt, evne til med moderate high-throughput assays, og evnen til at spore immuncelle adfærd og funktion med lys-mikroskopi.

Protocol

Alt arbejde skal udføres ved hjælp af biosikkerhed niveau 2 (eller BSL2) standarder beskrevet af det amerikanske Centers for Disease Control (CDC) og i overensstemmelse med direktiver fastsat af Institutional Animal Care og Brug udvalg (IACUC). Venligst konferere med de relevante embedsmænd for at sikre sikkerhed og overholdelse. 1. zebrafisk Vedligeholdelse Gyde zebrafisk og indsamle det nødvendige antal embryoer til forsøgene. Om nødvendigt masse avl tanke, som dem beskrev…

Representative Results

Her bliver data, der viser, hvordan systemisk IAV infektion i zebrafisk kan anvendes til at teste lægemiddelvirkningsfuldhed (figur 1A) billede. Embryoner efter 48 timer efter befrugtning injiceres med APR8 (figurerne 1C, 1F), X-31 (figurerne 1D, 1G), eller NS1-GFP (fig 1H-1I) via kanalen af Cuvier at indlede en virusinfektion. En anden kohorte af embryoner på 48 timer efter befrugtningen blev injiceret for at tjene so…

Discussion

For at maksimere fordelene erfaringer fra at bruge et lille dyr til at modellere menneskelige vært-patogen interaktioner, er det vigtigt at indramme forskningsspørgsmål og afprøve hypoteser, der udnytter de iboende fordele ved modelsystemet. Som model for menneskelig IAV infektion, den zebrafisk har flere styrker, herunder høj frugtbarhed, optisk klarhed, modtagelighed for screening narkotika, og tilgængeligheden af ​​transgene linier, som mærker immunceller som neutrofiler. Zebrafisk er blevet udviklet som e…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Mark Nilan for zebrafish care and maintenance and Meghan Breitbach and Deborah Bouchard for propagating NS1-GFP and determining IAV titers. This research was supported by NIGMS grant NIH P20GM103534 and the Maine Agricultural and Forest Experiment Station (Publication Number 3493).

Materials

Instant Ocean Spectrum Brands SS15-10
100 x 25 mm sterile disposable Petri dishes  VWR  89107-632
Transfer pipettes  Fisherbrand 13-711-7M
Tricaine- S (MS-222) Western Chemical
Borosilicate glass capillary with filament  Sutter Instrument  BF120-69-10
Flaming/Brown micropipette puller  Sutter Instrument  P-97
Agarose Lonza 50004
Zanamivir AK Scientific G939
Dumont #5 forceps  Electron Microscopy Sciences 72700-D
Microloader tips Eppendorf 930001007
Microscope immersion oil Olympus IMMOIL-F30CC
Microscope stage calibration slide  AmScope MR095
MPPI-3 pressure injector  Applied Scientific Instrumentation
Stereo microscope Olympus SZ61
Back pressure unit Applied Scientific Instrumentation BPU
Micropipette holder kit Applied Scientific Instrumentation MPIP
Foot switch Applied Scientific Instrumentation FSW
Micromanipulator Applied Scientific Instrumentation MM33
Magnetic base Applied Scientific Instrumentation Magnetic Base
Phenol red  Sigma-Aldrich  P-4758
Low temperature incubator VWR 2020
SteREO Discovery.V12 Zeiss
Illuminator Zeiss HXP 200C
Cold light source Zeiss  CL6000 LED
Glass-bottom multiwell plate, 24 well Mattek P24G-0-13-F
Confocal microscope Olympus IX-81 with FV-1000 laser scanning confocal system
Fluoview software Olympus
Prism v6 GraphPad
Influenza A/PR/8/34 (H1N1) virus  Charles River  490710
Influenza A X-31, A/Aichi/68 (H3N2)  Charles River  490715
Influenza NS1-GFP Referenced in Manicassamy et al. 2010
Tg(mpx:mCherry) Referenced in Lam et al. 2013

Referências

  1. De Clercq, E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5 (12), 1015-1025 (2006).
  2. von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 6 (12), 967-974 (2007).
  3. Fiore, A. E., et al. Antiviral Agents for the Treatment and Chemoprophylaxis of Influenza. Centers for Disease Control and Prevention. , 1-26 (2011).
  4. Krammer, F., Palese, P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 14 (3), 167-182 (2015).
  5. Ren, H., Zhou, P. Epitope-focused vaccine design against influenza A and B viruses. Curr Opin Immunol. 42, 83-90 (2016).
  6. Webster, R. G., Govorkova, E. A. Continuing challenges in influenza. Ann N Y Acad Sci. 1323, 115-139 (2014).
  7. Bouvier, N. M., Lowen, A. C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses. 2 (8), 1530-1563 (2010).
  8. Ibricevic, A., et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol. 80 (15), 7469-7480 (2006).
  9. Skehel, J. J., Wiley, D. C. RECEPTOR BINDING AND MEMBRANE FUSION IN VIRUS ENTRY: The Influenza Hemagglutinin. Annu Rev Biochem. 69 (1), 531 (2000).
  10. Rust, M. J., Lakadamyali, M., Zhang, F., Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 11 (6), 567-573 (2004).
  11. Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T., Dermody, T. S. The sweet spot: defining virus-sialic acid interactions. Nature Rev Microbiol. 12 (11), 739-749 (2014).
  12. Herlocher, M. L., et al. Ferrets as a Transmission Model for Influenza: Sequence Changes in HA1 of Type A (H3N2) Virus. J Infect Dis. 184 (5), 542-546 (2001).
  13. Belser, J. A., Katz, J. M., Tumpey, T. M. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 4 (5), 575-579 (2011).
  14. Cochran, K. W., Maassab, H. F., Tsunoda, A., Berlin, B. S. Studies on the antiviral activity of amantadine hydrochloride. Ann N Y Acad Sci. 130 (1), 432-439 (1965).
  15. de Oliveira, S., Boudinot, P., Calado, A., Mulero, V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 194 (4), 1523-1533 (2015).
  16. de Oliveira, S., et al. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 190 (8), 4349-4359 (2013).
  17. Gabor, K. A., et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis Model Mech. 7 (11), 1227-1237 (2014).
  18. Galani, I. E., Andreakos, E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 98 (4), 557-564 (2015).
  19. Gratacap, R. L., Rawls, J. F., Wheeler, R. T. Mucosal candidiasis elicits NF-kappaB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech. 6 (5), 1260-1270 (2013).
  20. Henry, K. M., Loynes, C. A., Whyte, M. K., Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 94 (4), 633-642 (2013).
  21. Mathias, J. R., et al. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci. 120 (19), 3372-3383 (2007).
  22. Shelef, M. A., Tauzin, S., Huttenlocher, A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev. 256 (1), 269-281 (2013).
  23. Walters, K. B., Green, J. M., Surfus, J. C., Yoo, S. K., Huttenlocher, A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 116 (15), 2803-2811 (2010).
  24. Yoo, S. K., et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell. 18 (2), 226-236 (2010).
  25. Yoo, S. K., Huttenlocher, A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol. 89 (5), 661-667 (2011).
  26. Yoo, S. K., et al. The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci. 125 (23), 5702-5710 (2012).
  27. Winata, C. L., et al. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol. 331 (2), 222-236 (2009).
  28. Perry, S. F., Wilson, R. J., Straus, C., Harris, M. B., Remmers, J. E. Which came first, the lung or the breath?. Comp Biochem Physiol A Mol Integr Physiol. 129 (1), 37-47 (2001).
  29. Gratacap, R. L., Bergeron, A. C., Wheeler, R. T. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. J Vis Exp. (93), e52182 (2014).
  30. Adatto, I., Lawrence, C., Thompson, M., Zon, L. I. A New System for the Rapid Collection of Large Numbers of Developmentally Staged Zebrafish Embryos. PLoS ONE. 6 (6), e21715 (2011).
  31. Manicassamy, B., et al. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci USA. 107 (25), 11531-11536 (2010).
  32. Lawrence, C. The husbandry of zebrafish (Danio rerio): a review. Aquaculture. 269 (1), 1-20 (2007).
  33. Lam, P. -. y., Harvie, E. A., Huttenlocher, A. Heat Shock Modulates Neutrophil Motility in Zebrafish. PLoS ONE. 8 (12), e84436 (2013).
  34. Shelton, M. J., et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. 55 (11), 5178-5184 (2011).
  35. Sullivan, C., Kim, C. H. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25 (4), 341-350 (2008).
  36. MacRae, C. A., Peterson, R. T. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 14 (10), 721-731 (2015).
  37. Brandes, M., Klauschen, F., Kuchen, S., Germain, R. N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 154 (1), 197-212 (2013).
  38. Narasaraju, T., et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 179 (1), 199-210 (2011).
  39. Pillai, P. S., et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 352 (6284), 463-466 (2016).
  40. Stifter, S. A., et al. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog. 12 (1), e1005378 (2016).
  41. Vlahos, R., Stambas, J., Selemidis, S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci. 33 (1), 3-8 (2012).
  42. Palic, D., Andreasen, C. B., Ostojic, J., Tell, R. M., Roth, J. A. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J Immunol Methods. 319 (1-2), 87-97 (2007).
  43. Renshaw, S. A., et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  44. Mathias, J. R., et al. Characterization of zebrafish larval inflammatory macrophages. Dev Comp Immunol. 33 (11), 1212-1217 (2009).
  45. Pase, L., et al. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol. 22 (19), 1818-1824 (2012).
  46. Drescher, B., Bai, F. Neutrophil in viral infections, friend or foe?. Virus Res. 171 (1), 1-7 (2013).
  47. Iwasaki, A., Pillai, P. S. Innate immunity to influenza virus infection. Nat Rev Immunol. 14 (5), 315-328 (2014).
  48. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13 (3), 159-175 (2013).
  49. Summers, C., et al. Neutrophil kinetics in health and disease. Trends Immunol. 31 (8), 318-324 (2010).
  50. Tate, M. D., Brooks, A. G., Reading, P. C. The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res. 9, 57 (2008).
  51. Tate, M. D., et al. Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol. 183 (11), 7441-7450 (2009).
  52. Tumpey, T. M., et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol. 79 (23), 14933-14944 (2005).
  53. Wheeler, J. G., Winkler, L. S., Seeds, M., Bass, D., Abramson, J. S. Influenza A virus alters structural and biochemical functions of the neutrophil cytoskeleton. J Leukoc Biol. 47 (4), 332-343 (1990).
  54. de Oliveira, S., et al. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium. Dev Comp Immunol. 49 (1), 44-48 (2015).
  55. Harvie, E. A., Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol. 98 (4), 523-537 (2015).
check_url/pt/55235?article_type=t

Play Video

Citar este artigo
Sullivan, C., Jurcyzszak, D., Goody, M. F., Gabor, K. A., Longfellow, J. R., Millard, P. J., Kim, C. H. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses. J. Vis. Exp. (119), e55235, doi:10.3791/55235 (2017).

View Video