Summary

鞭毛马达功能的生物物理表征

Published: January 18, 2017
doi:

Summary

Recent findings suggest that bacterial flagellar motors sense a variety of environmental signals and remodel in response. The bead-assays discussed here are expected to help explain the role of remodeling in cellular adaptation to environmental stressors.

Abstract

The role of flagellar motors in bacterial motility and chemotaxis is well-understood. Recent discoveries suggest that flagellar motors are able to remodel in response to a variety of environmental stimuli and are among the triggers for surface colonization and infections. The precise mechanisms by which motors remodel and promote cellular adaptation likely depend on key motor attributes. The photomultiplier-based bead-tracking technique presented here enables accurate biophysical characterization of motor functions, including adaptations in motor speeds and switch-dynamics. This approach offers the advantage of real-time tracking and the ability to probe motor behavior over extended durations. The protocols discussed can be readily extended to study flagellar motors in a variety of bacterial species.

Introduction

鞭毛马达使细胞通过旋转螺旋灯丝外游。转矩的电动机可产生用于鞭毛( ,粘性载荷)的给定长度的量决定了游泳速度。另一方面,其可切换旋转方向的能力控制响应于化学物质,被称为趋化处理细胞迁移。趋化和运动是毒力因子1-3,鞭毛马达已良好的特点,多年来4。越来越多的证据现在表明电动机充当mechanosensor -它机械地检测固体基材5,6的存在。这种能力可能有助于触发表面定植和感染5,7。其结果是,由此,电动机感应表面,并发起信令的机制意义8,9。

该鞭毛马达可通过圈养的flagell很容易研究微米到衬底上并观察细胞的旋转。这种束缚首先由西尔弗曼和Simon,谁在大肠杆菌 polyhook突变体,并成功地附着钩玻璃基板用抗钩抗体10的工作来实现。拴系细胞测定法使研究人员能够电动开关的响应研究的各种化学刺激。例如,西格尔和同事化学刺激的拴系细胞用离子电渗疗法移液器的助剂。在CW 偏置相应的变化(时间电机的部分按顺时针方向旋转,CW)使他们能够衡量网络的趋化性11,12适应的动力学。而拴系细胞测定是有效的学习开关响应,那也只是能提供分析上市马达力学上的粘性负载13的一个有限的范围内。为了克服这个问题,柳和同事拴球形,乳胶珠灯丝上粘到表面上的细胞存根。将珠然后使用后焦干涉与微弱光陷阱14跟踪。通过与不同大小的珠子时,研究人员可以研究电机在更宽的负载范围。此法后来被元和Berg,谁开发基于光电倍增管珠,跟踪技术与激光暗视场照明相结合的提高。他们的方法启用的系留黄金纳米珠说人话的小(〜60纳米),相比内部电阻粘稠旋转15,16外部电阻粘性较低的跟踪。这导致在大肠杆菌中可达到的最大速度(〜300赫兹)的测量结果。在溶藻弧菌 ,在中间的粘性负载(〜700赫兹)17启用类似珠检测纺纱率的测量。通过使电动机响应的测量结果在整个可能范围的粘性载荷(从零负载到近失速),珠的测定法提供了一个重要的生物物理工具来了解第torque生成过程18,19。

最近,我们修改了元伯格法包括使我们能够精确的机械刺激适用于单个电机6光学镊子。使用这种技术,我们发现,该旋转电机的力发电机是动态mechanosensors – 它们响应于粘性载荷变化重塑。这可能是这样的负荷感测触发细胞分化成蜂拥细菌,虽然机制尚不清楚。它也可能是在其他物种的鞭毛电机也机械敏感20,虽然直接的证据不足。在这里,我们讨论了跟踪拴鞭毛细丝15乳胶颗粒旋转基于光电倍增(PMT)的方法。相比于与超快摄像机跟踪,光电倍增管,设置是有利的,因为它是相对简单的实时和在长硬脑膜跟踪单个珠系统蒸发散。研究长期在鞭毛马达络合物重塑由于环境刺激21时,它是特别有用的。虽然专门为大肠杆菌我们详细介绍的协议,它们可容易地适用于其它物种研究鞭毛电机。

Protocol

1.细胞的制备生长所需的应变在胰蛋白胨肉汤(TB,1%胨,0.5%氯化钠),随后接种于1等位基因15,22携带粘的fliC的过夜培养物:100稀释在10mL新鲜结核病。生长的培养物在33℃下在摇床培养箱直到OD 600 = 0.5。 沉淀细胞在1500×g离心5 – 7分钟和重新分散沉淀大力在10mL过滤灭菌蠕动缓冲器(MB; 10mM磷酸盐缓冲液:0.05-0.06 M氯化钠,10 -4 M EDTA,1μM的蛋氨酸, pH?…

Representative Results

的光电倍增管设置示于图1A。重要的是,所述光电倍增管具有在由所感兴趣的珠散落的波长范围内的高灵敏度。这里使用的光电倍增管在可见光和近红外范围内工作,并能够检测由被卤素光源照射珠散射光。最佳的照明条件和电源电压的变化会从一个设置到另一个。对于在这项工作中所使用的安装,一个PMT增益〜4月10日至5月10日被证明足够。?…

Discussion

为了便于拴珠跟踪和电机扭矩的正确估计,下面的信息进行审查。当与有鞭毛的细胞执行这些测量,剪切是一个关键步骤。剪切降低了鞭毛丝到仅仅存根,从而确保电机的粘性载荷主要是由于胎圈和可在10%的误差16内进行估计。剪切还改善寻找具有紧密分布的偏心(<珠粒径14)的圆形轨迹的机会。不当的剪切导致任性轨迹,这在跟踪和粘阻力的计算,以及导致差信号噪声比化?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge Howard Berg for the gift of the bead-tracking microscope/photomultipliers and the Texas A&M Engineering Experiment Station for funds.

Materials

Poly-L-lysine Solution (0.1%) Sigma-Aldrich P8920 http://www.sigmaaldrich.com/catalog/product/sigma/p8920?lang=en&region=US
Polybead Microspheres Polysciences, Inc. 7307 http://www.sigmaaldrich.com/catalog/product/sigma/p8920?lang=en&region=US
1 ml Luer Slip Tip Syringe Exel Int. 26048 http://www.exelint.com/tuberculin_syringes.php
Clay Adams Intramedic Luer-Stub Adapter 23-gauge Becton, Dickinson and Company 427565 http://www.bd.com/ds/productCenter/ES-LuerStubAdaptors.asp
Polyethylene tubing Harvard Apparatus 59-8325 http://www.harvardapparatus.com/laboratory-polye-polyethylene-non-sterile-tubing.html
Photomultiplier Tubes Hamamatsu R7400U-20 Spectral response range of 300 to 920 nm, Peak wavelength 630 nm,  0.78 ns response time 
http://pdf1.alldatasheet.com/datasheet-pdf/view/212308/HAMAMATSU/R7400U-20.html
3×1 mm precision slits Edmund Optics NT39-908 2 slits mounted at right angles to one another on photomultiplier tubes
Oscilloscope Tektronix TBS 1032B Alternative brands are acceptable. Digital Oscilloscope, TBS 1000B Series, 2 Analogue, 30 MHz, 500 MSPS, 2.5 kpts 
http://www.tek.com/oscilloscope/tbs1000b-digital-storage-oscilloscope
8 Pole LP/HP Filter Krohn-Hite 3384 Alternative brands are acceptable. A frequency range from 0.1 Hz to 200 kHz is recommended.   
http://www.krohn-hite.com/htm/filters/PDF/3384Data.pdf
Optiphot microscope Nikon NA Any upright or inverted phase microscope can be used.
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=754
50:50 (R:T) Cube Beamsplitter ThorLabs BS013

Referências

  1. Emody, L., Kerenyi, M., Nagy, G. Virulence factors of uropathogenic Echerichia coli. Int J Antimicrob. Ag. 22, 29-33 (2003).
  2. Lane, M. C., et al. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun. 73 (11), 7644-7656 (2005).
  3. Kao, C. Y., et al. The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur J Clin Microbiol Infect Dis. 33 (12), 2157-2162 (2014).
  4. Berg, H. C. The rotary motor of bacterial flagella. Annu Rev Biochem. 72, 19-54 (2003).
  5. McCarter, L., Hilmen, M., Silverman, M. Flagellar Dynamometer Controls Swarmer Cell Differentiation of V. parahaemolyticus. Cell. 54 (3), 345-351 (1988).
  6. Lele, P. P., Hosu, B. G., Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A. 110 (29), 11839-11844 (2013).
  7. Gode-Potratz, C. J., Kustusch, R. J., Breheny, P. J., Weiss, D. S., McCarter, L. L. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol. 79 (1), 240-263 (2011).
  8. Kearns, D. B. A field guide to bacterial swarming motility. Nat Rev Microbiol. 8 (9), 634-644 (2010).
  9. Belas, R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 22 (9), 517-527 (2014).
  10. Silverman, M., Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature. 249, 73-74 (1974).
  11. Block, S. M., Segall, J. E., Berg, H. C. Adaptation Kinetics in Bacterial Chemotaxis. J Bacteriol. 154 (1), 312-323 (1983).
  12. Segall, J. E., Block, S. M., Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci U S A. 83, 8987-8991 (1986).
  13. Blair, D. F., Berg, H. C. Restoration of torque in defective flagellar motors. Science. 242 (4886), 1678-1681 (1988).
  14. Ryu, W. S., Berry, R. M., Berg, H. C. Torque-generating units of the flagellar motor of Escherchia coli have a high duty ratio. Nature. 403, 444-447 (2000).
  15. Yuan, J., Berg, H. C. Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci U S A. 105 (4), 1182-1185 (2008).
  16. Yuan, J., Fahrner, K. A., Berg, H. C. Switching of the bacterial flagellar motor near zero load. J Mol Biol. 390 (3), 394-400 (2009).
  17. Sowa, Y., Hotta, H., Homma, M., Ishijima, A. Torque-speed Relationship of the Na+-driven Flagellar Motor of Vibrio alginolyticus. J Mol Biol. 327 (5), 1043-1051 (2003).
  18. Xing, J., Bai, F., Berry, R., Oster, G. Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 103 (5), 1260-1265 (2006).
  19. Meacci, G., Tu, Y. Dynamics of the bacterial flagellar motor with multiple stators. Proc Natl Acad Sci U S A. 106 (10), 3746-3751 (2009).
  20. Lele, P. P., Roland, T., Shrivastava, A., Chen, Y. H., Berg, H. C. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards. Nat Phys. 12 (2), 175-178 (2016).
  21. Lele, P. P., Shrivastava, A., Roland, T., Berg, H. C. Response thresholds in bacterial chemotaxis. Sci Adv. 1 (9), e1500299 (2015).
  22. Berg, H. C., Turner, L. Torque Generated by the Flagellar Motor of Escherichia coli. Biophys J. 65, 2201-2216 (1993).
  23. Bai, F., et al. Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch. Science. 327, 685-689 (2010).
  24. Reid, S. W., et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A. 103, 8066-8071 (2006).
  25. Chen, X., Berg, H. C. Torque-Speed Relationship of the Flagellar Rotary Motor of Escherichia coli. Biophys J. 78, 1036-1041 (2000).
  26. Turner, L., Caplan, S. R., Berg, H. C. Temperature-induced switching of the bacterial flagellar motor. Biophys J. 71, 2227-2233 (1996).
check_url/pt/55240?article_type=t

Play Video

Citar este artigo
Ford, K. M., Chawla, R., Lele, P. P. Biophysical Characterization of Flagellar Motor Functions. J. Vis. Exp. (119), e55240, doi:10.3791/55240 (2017).

View Video