Summary

马卵母细胞染色体分离,组蛋白乙酰化和主轴形态分析

Published: May 11, 2017
doi:

Summary

该手稿描述了一种用于形态和生物化学表征马卵母细胞的实验方法。具体来说,本文通过超声引导的卵子吸收(OPU)如何收集不成熟和成熟的马卵母细胞,以及如何调查染色体分离,纺锤形态,全局组蛋白乙酰化和mRNA表达。

Abstract

辅助生殖领域已被开发用于治疗妇女,伴侣动物和濒危物种的不育症。在马上,辅助生殖也允许从高绩效者生产胚胎,而不会中断他们的运动生涯,并有助于增加从高遗传价值的母马的数量。本手稿描述了使用卵子吸收(OPU)从马卵巢收集未成熟和成熟卵母细胞的程序。然后通过适应以前在小鼠中发展的方案,将这些卵母细胞用于研究非整倍体的发生率。具体而言,共焦激光显微镜扫描后,染色体和中期II(MII)卵母细胞的着丝粒被荧光标记并计数在连续的焦点图上。该分析显示,当从卵泡中收集未成熟卵母细胞并在体外成熟时,非整倍体率的发生率较高在体内。微管蛋白的免疫染色和特定赖氨酸残基的组蛋白4的乙酰化形式也揭示了减数分裂纺锤体的形态和组蛋白乙酰化的全局模式的差异。最后,通过逆转录和定量PCR(q-PCR)研究了编码组蛋白脱乙酰酶(HDAC)和乙酰转移酶(HAT)的mRNA的表达。 在体外体内成熟的卵母细胞之间没有观察到转录物的相对表达的差异。与卵母细胞成熟期间转录活性的一般沉默一致,总转录物量的分析只能揭示mRNA的稳定性或降解。因此,这些研究结果表明,其他翻译和翻译后法规可能会受到影响。

总体而言,本研究描述了一种用于形态和生物化学表征马卵母细胞的实验方法由于样品可用性低,这种类型的研究极具挑战性。然而,它可以扩大我们对单调繁殖生物学和不孕症的知识。

Introduction

已经开发了广泛的辅助生殖技术来治疗妇女,伴侣动物和濒危物种的不育症。临床设置中最常见的手术之一是通过超声引导经阴道抽吸,卵子吸收(OPU) 1从卵巢卵泡中检索中期II(MII)阶段卵母细胞。然后将这些卵母细胞体外受精 (IVF),将所得的胚胎植入受体子宫。在外源性促性腺激素给药后,取出MII期(成熟)卵母细胞。然而,这种治疗在一些患者中与卵巢过度刺激综合征(OHSS)的发展有关2

利用完全成熟的未成熟卵母细胞(GV-stage)的内在能力自发恢复减数分裂,从卵泡中分离出来,可以获得成熟的卵母细胞,而不需要管理调理促性腺激素3 。该过程称为卵母细胞体外成熟(IVM),并且代表了辅助生殖技术的药物导向较少,成本更低且更耐用的方法。然而,胚胎发育与体外成熟卵母细胞的成功通常低于体内成熟卵母细胞4,5 。可能的解释是, 体外成熟的卵母细胞更多地受到染色体分离中的错误的影响,并且由此产生的非整倍体损害了正常的胚胎发育6

了解IVM期间染色体错分离的分子基础将最终披露这种技术的全部潜力。在这方面,实验方法用于研究体外成熟卵母细胞的形态和生化特征, 与体内成熟相比这里描述了卵母细胞7,8 。具体来说,使用成年和自然循环马作为实验模型说明未成熟卵母细胞的OPU和未成熟卵母细胞的IVM的程序。然后,使用免疫荧光和图像分析来研究染色体分离,纺锤形态和组蛋白乙酰化对这些配子的全局模式。最后,描述了用于mRNA表达分析的逆转录和定量PCR方案。

与啮齿动物模型相比,马不允许遗传操作,操作不太方便,需要昂贵的维护。然而,由于与人类卵巢生理学的相似性,这种模型对于卵母细胞成熟的研究正在获得相当大的兴趣,/ SUP>。此外,在马中制定IVM-IVF的可靠方案具有重大的经济利益,因为它将允许从遗传价值高的母马的数量增加。

对卵母细胞进行实验的一个局限性,特别是在单调节物种中,是限制样品的可用性。通过将以前在小鼠中开发的方法调整到马卵母细胞13,14以便进行最小化样品损失的染色体计数(参见与其他可用技术的比较的讨论),已经克服了这个限制。此外,已经优化了三重荧光染色方案以对相同的样品进行多重分析,并且仅在2个卵母细胞池上进行q-PCR分析。

总体而言,本研究描述了一种旨在形态和生物化学方面的实验方法使马卵母细胞变得更细,这种细胞类型由于样本可用性低而极具挑战性。然而,它可以扩大我们对生殖生物学和不育性不育的知识。

Protocol

所有程序均经动物保护使用委员会CEEA Val de Loire No.19批准,并按照“实验动物护理和使用指导原则”进行。 卵母细胞收集和体外成熟 卵子接送 每日通过超声检查成年母体队列中卵巢卵泡的直径。在卵泡≥33mm(优势卵泡)出现时,在颈静脉上部注射1500IU人绒毛膜促性腺激素(hCG)的母马(iv)。 在进行注射前,用酒精拭拭该区域,找到?…

Representative Results

这些实验的原始发现在以前已经深入描述7并且在本文中作为可以使用所述方案获得的结果的实例进行报道。 成熟率在OPU从优势卵泡获得的32个COCs中,28个(88%)处于MII阶段。在5-25mm大小的卵泡中收集的58个COC中的14个被立即快速冷冻为未成熟的卵母细胞用于mRNA表达…

Discussion

即使IVM已经在马上进行了超过二十年16 ,我们还不知道卵母细胞是否可以是胚胎非整倍体的起源,正如人类提出的一样。原因可能是卵母细胞扩散用于染色体计数导致相当大的样品损失。考虑到这一点,进行了调查染色体分离错误的方法的调查,以寻找适用于马卵母细胞的最合适的技术。在科学文献中发现了四种主要技术:1)染色体扩增5,18,19,2)荧光原位杂交(FISH)4,6,1…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢Fabrice Vincent对激光扫描共焦显微镜(LSCM)的支持,PhilippeBarrière和Thierry Blard进行每日超声卵巢扫描和hCG注射。这项工作部分得到“区域经济和区域伦巴第”项目“Ex Ovo Omnia”(AML授权号26096200)的支持。奖学金(2012年至2012年合约),FP7-PEOPLE-2011 CIG,研究执行机构(REA)“Pro-Ovum”(授予VL的第303640号);“欧莱雅意大利”以及由欧洲社会基金,2007 – 2013年人力资源开发部门行动计划(合同编号:POSDRU / 89 / 1.5 / S / 62371至IM)共同资助的农业和兽医学博士后。 体内卵母细胞收集由Institut du Cheval et de l'Equitation提供资金。

Materials

ultrasound probe Aloka UST-5820-7,5
human chorionic gonadotrophin  centravet CHO004 1500unit/animal IV
detomidine centravet MED010 9-15µg/kg IV
butylscopolamine bromure  centravet EST001 0,2mg/kg IV
stereomicroscope NIKON SMZ-2B
butorphanol centravet DOL003 10µg/kg IV
benzyl-penicillin centravet DEP203 IM 15000UI/animal
TCM199 Sigma-Aldrich M3769 10X1L powder for hepes-buffered TCM199
Hepes sodium salt Sigma-Aldrich H3784-100G
bovine serum albumin Sigma-Aldrich A8806
heparin  Sigma-Aldrich H3149-10KU
NaHCO3-buffered TCM199 Sigma-Aldrich M2154-500ML liquid for IVM medium
epidermal growth factor Sigma-Aldrich E4127
newborn calf serum Sigma-Aldrich N4762-500ML
4-well dishes NUNCLON 144444
incubator Heraeus BB6060
monastrol Sigma-Aldrich M8515
hyaluronidase Sigma-Aldrich H3506
pronase Sigma-Aldrich P5147
paraformaldehyde Sigma-Aldrich P6148
polyvinyl alcohol Sigma-Aldrich 341584
triton-X 100 Sigma-Aldrich T8787
normal donkey serum  Sigma-Aldrich D9663
rabbit anti-Aurora B phospho-Thr232  BioLegend 636102
TRITC-conjugated donkey anti-rabbit IgG  Vector Laboratories 711-025-152
Vecta-Shield Vector Laboratories H-1000
YOPRO1 Thermofisher Scientific Y3603
confocal laser scanning microscope  LSM 780  Zeiss
confocal laser scanning microscope  LSM 700  Zeiss
ImageJ software rsb.info. nih.gov/ij/download.html  free resource
mouse anti-alpha-tubulin  Sigma-Aldrich T8203
rabbit anti-acH4K16 Upstate Biotechnology 07-329
AlexaFluor 488-coniugated donkey anti-mouse IgG Life Technologies A21202
4’,6-diamidino-2-phenylindole  Sigma-Aldrich D8417 DAPI
centrifuge Eppendorf 5417R
RNALater Invitrogen AM7020
Luciferase RNA Promega L4561
PicoPure RNA Isolation Kit  Applied Biosystems 12204-01
random hexamers  Thermofisher Scientific N8080127
mouse Moloney leukaemia virus reverse transcriptase Thermofisher Scientific 28025013
SYBR green supermix  BioRad 1708880
specific primers Sigma-Aldrich specific primers were designed using Primer3Plus software (free resource)
thermal-cycler  BioRad MyiQ 
mouse monoclonal anti-CENPA Abcam ab13939
mouse monoclonal anti-Aurora B Abcam ab3609

Referências

  1. Dellenbach, P. Transvaginal, sonographically controlled ovarian follicle puncture for egg retrieval. Lancet. 1 (8392), 1467 (1984).
  2. Humaidan, P. Ovarian hyperstimulation syndrome: review and new classification criteria for reporting in clinical trials. Hum Reprod. , (2016).
  3. Pincus, G., Enzmann, E. V. The Comparative Behavior of Mammalian Eggs in Vivo and in Vitro : I. The Activation of Ovarian Eggs. J Exp Med. 62 (5), 665-675 (1935).
  4. Emery, B. R., Wilcox, A. L., Aoki, V. W., Peterson, C. M., Carrell, D. T. In vitro oocyte maturation and subsequent delayed fertilization is associated with increased embryo aneuploidy. Fertil Steril. 84 (4), 1027-1029 (2005).
  5. Nichols, S. M., Gierbolini, L., Gonzalez-Martinez, J. A., Bavister, B. D. Effects of in vitro maturation and age on oocyte quality in the rhesus macaque Macaca mulatta. Fertil Steril. 93 (5), 1591-1600 (2010).
  6. Requena, A. The impact of in-vitro maturation of oocytes on aneuploidy rate. Reprod Biomed Online. 18 (6), 777-783 (2009).
  7. Franciosi, F. In vitro maturation affects chromosome segregation, spindle morphology and acetylation of lysine 16 on histone H4 in horse oocytes. Reprod Fertil Dev. , (2015).
  8. Franciosi, F. Changes in histone H4 acetylation during in vivo versus in vitro maturation of equine oocytes. Mol Hum Reprod. 18 (5), 243-252 (2012).
  9. Choi, Y. H., Gibbons, J. R., Canesin, H. S., Hinrichs, K. Effect of medium variations (zinc supplementation during oocyte maturation, perifertilization pH, and embryo culture protein source) on equine embryo development after intracytoplasmic sperm injection. Theriogenology. , (2016).
  10. Hendriks, W. K. Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos. Reprod Fertil Dev. 27 (6), 957-968 (2015).
  11. Carnevale, E. M. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology. 69 (1), 23-30 (2008).
  12. Ginther, O. J. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women. Theriogenology. 77 (5), 818-828 (2012).
  13. Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M., Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol. 20 (17), 1522-1528 (2010).
  14. Duncan, F. E., Chiang, T., Schultz, R. M., Lampson, M. A. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol Reprod. 81 (4), 768-776 (2009).
  15. Larionov, A., Krause, A., Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 6 (62), (2005).
  16. Choi, Y. H., Hochi, S., Braun, J., Sato, K., Oguri, N. In vitro maturation of equine oocytes collected by follicle aspiration and by the slicing of ovaries. Theriogenology. 40 (5), 959-966 (1993).
  17. Hassold, T., Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2 (4), 280-291 (2001).
  18. Akiyama, T., Nagata, M., Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc Natl Acad Sci U S A. 103 (19), 7339-7344 (2006).
  19. Homer, H. A. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev. 19 (2), 202-207 (2005).
  20. Rambags, B. P. Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev. 72 (1), 77-87 (2005).
  21. Nabti, I., Marangos, P., Bormann, J., Kudo, N. R., Carroll, J. Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity. J Cell Biol. 204 (6), 891-900 (2014).
  22. Shomper, M., Lappa, C., FitzHarris, G. Kinetochore microtubule establishment is defective in oocytes from aged mice. Cell Cycle. 13 (7), 1171-1179 (2014).
  23. Luzzo, K. M. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 7 (11), e49217 (2012).
  24. Ma, P., Schultz, R. M. Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. PLoS Genet. 9 (3), e1003377 (2013).
  25. Yang, F., Baumann, C., Viveiros, M. M., De La Fuente, R. Histone hyperacetylation during meiosis interferes with large-scale chromatin remodeling, axial chromatid condensation and sister chromatid separation in the mammalian oocyte. Int J Dev Biol. 56 (10-12), 889-899 (2012).
  26. Luciano, A. M. Oocytes isolated from dairy cows with reduced ovarian reserve have a high frequency of aneuploidy and alterations in the localization of progesterone receptor membrane component 1 and aurora kinase B. Biol Reprod. 88 (3), 58 (2013).
  27. Luciano, A. M., Lodde, V., Franciosi, F., Ceciliani, F., Peluso, J. J. Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction. 140 (5), 663-672 (2010).
  28. Terzaghi, L. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis. Cell Cycle. , 1-14 (2016).
  29. Susor, A., Jansova, D., Anger, M., Kubelka, M. Translation in the mammalian oocyte in space and time. Cell Tissue Res. 363 (1), 69-84 (2016).
  30. Chen, J. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25 (7), 755-766 (2011).
  31. Ma, J., Flemr, M., Strnad, H., Svoboda, P., Schultz, R. M. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod. 88 (1), 11 (2013).
check_url/pt/55242?article_type=t

Play Video

Citar este artigo
Franciosi, F., Tessaro, I., Dalbies-Tran, R., Douet, C., Reigner, F., Deleuze, S., Papillier, P., Miclea, I., Lodde, V., Luciano, A. M., Goudet, G. Analysis of Chromosome Segregation, Histone Acetylation, and Spindle Morphology in Horse Oocytes. J. Vis. Exp. (123), e55242, doi:10.3791/55242 (2017).

View Video