Summary

通过光纤使用波前整形多个信号的传输

Published: March 20, 2017
doi:

Summary

We demonstrate the transmission of multiple independent signals through a multimode fiber using wavefront shaping employing a single spatial light modulator. By modulating the wavefront for each signal individually, spatially separated foci are transmitted. Potential applications are multiplexed data transfer in communications engineering and endoscopic light delivery in biophotonics.

Abstract

多个独立的光信号通过一个多模光纤传输用波前整形,以便在光纤内的传播过程中的光失真进行补偿来实现。我们的方法是基于采用仅单个空间光调制器,其中,所述光学波前单独的调制器的不同区域进行调制,每个光信号的一个区域的数字光学相位共轭。数字光学相位共轭的方法都被认为是比其他波前成形方法,其中(例如)进行光纤的波传播行为的完整判定更快。与此相反,所提出的方法是时有效,因为它仅需要每个光信号的一个校准。该方法可能是适合于通信工程空分复用。进一步的应用领域是生物光子学内镜光传输,特别是在邻ptogenetics,其中单细胞生物组织有以高空间和时间分辨率被选择性地照明。

Introduction

多个光信号通过一多模光纤(MMF)的传输是在通信工程1和生物光子学2明显。在通信工程,空间多路复用(SDM)被认为是为了增强对未来的数据传输应用的光纤的传输容量从在有限的空间的利用率更高受益,一个可行的解决方案相比,多个单模光纤3。在生物光子学,生物样品是由透光通过MMF内窥镜4操纵。例如,使用MMF内窥镜单个神经元的独立的光学控制是用于光遗传学兴趣为了研究神经元网络中的大脑5。然而,投射到该MMF输入面的光的传播到outpu期间受到失真由于模式混合和分散MMF的效应的T方面。其结果是,光传播被改变,这使得信号传输有挑战性。

波前成形方法6,7在散射使用空间光调制器(SLM)的媒体应用并启用对失真补偿由于在光传播8飞散。有迹象表明,优化使用光学反馈9输出迭代的方法。这些方法是相当耗时,因为有必要为许多迭代和自由度高的,相应于大量调制器元件。另一种方法是完全确定通过其传输矩阵10描述该MMF内的失真。如果要发送的模式的数目是大的,这将是耗时的,因为良好。与此相反,数字光相位共轭(DOPC)被认为是快速和这里有利的,因为只有少数焦斑有在该MMF的输出面中产生。相位共轭方法也被证明用于聚焦或成像通过生物组织12,13,14。

到目前为止,DOPC被用于一个单一的时间信号仅15,16,并通过一个MMF 17施加的光的传输。多个独立信号A DOPC方法尚未实现。我们已经开发了一种增强的方法DOPC使用提供个人波前整形采用单相仅SLM 18的每个信号多个光信号独立传输。到这个目的,在SLM被分段成区域,每个信号来传送。所提出的实验装置如图1所示,其中校准是在实际传输之前执行在b)中发生的)。

图1
图1:实验装置。 BS =分光镜,CCD =电荷耦合器件,OM =光调制器,CMOS =互补金属氧化物半导体,HWP =半波片,L =透镜,LP =线性偏振器,MMF =多模光纤,OBJ =显微镜物镜, PBS =偏振分束器,SLM =空间光调制器(仅相) -仅适用于(A)的校准和(b)传输相关的横梁被描述请点击此处查看该图的放大版本。

Protocol

1.组装实验装置 制备的基端侧 放置和固定在激光提供一个准直光束 – 或在光纤的出射面利用具有准直光学器件的光纤耦合激光。 把偏振光束分离器(PBS),以将激光束分裂成参考和物体光束。通过在其旋转而旋转的HWP座,直到参考光束和物体光束(在远端侧)的功率大致相同转半波片(HWP)的方向。通过将屏幕分为两个参考和物光束进行检查。选择的PBS的取向?…

Representative Results

在2米长的光纤的前端侧的典型输出信号在图2中被描绘。需要注意的是所希望的焦斑(峰值)是伴随着不期望的斑点图案(背景),这是由于DOPC的缺陷作为一个原则问题。相应峰 – 背景比(PBR)等于53(仅信号1是“开”),36分别(只信号2“上”)和20(两个信号1和2“上”)这里, 。用于:(1710目前)时,它支持的模式的较大数量的纤维将PBR可以增加?…

Discussion

实验设置(在协议步骤1)的组装需要的光学部件的相对于彼此的透彻对齐。最重要的方面是参考光束到SLM的,以确保高的PBR矩形发病率。

为了提高在设置两个以上的发射的信号,也可使用附加的分束器。作为替代,基于光纤的实施将更为紧凑和坚固允许系统是便携式的用于在生物光子学原位调查。如果单端的访问是可能只,基于模型的校准溶液20</…

Declarações

The authors have nothing to disclose.

Acknowledgements

The financial support by DFG (German research foundation, project CZ 55/30-1) for parts of this work is gratefully acknowledged.

Materials

spatial light modulator Holoeye PLUTO‐VIS‐016
CMOS camera Mikrotron MC4082
diode‐pumped solid state laser Laser Quantum torus 532
CCD camera IDS U3‐3482LE‐M CMOS camera; suitable as well
lens 1 Qioptiq G063204000
lens 2 Qioptiq G063203000
lens 3 Thorlabs AC508‐180‐A‐ML
multimode fiber Thorlabs M14L02
beam splitters Thorlabs BS013 9x
polarizing beam splitters Thorlabs PBS251
mirrors Thorlabs PF10‐03‐P01 5x
microscope objectives Thorlabs RMS20X 2x
half wave plates Thorlabs WPH10M‐532 2x
linear polarizer Thorlabs LPVISB050‐MP2
optical modulators Thorlabs MC2000B‐EC 2x
linear and rotation stage for CMOS camera Thorlabs XYR1/M
fiber connector Thorlabs S120‐SMA 2x
reducing ring for microscope objectives Qioptiq G061621000 2x
xy adjustment for objective adapters Qioptiq G061025000 2x
z translation mount for fiber adapter Thorlabs SM1Z 2x
rods for fiber alignment to objectives Qioptiq G061210000 8x
mounts for lenses 1 and 2 plus two phantom mounts Qioptiq G061047000 4x
rail carriers for objective and lens mounts Qioptiq G061372000 6x
rail for rail carriers Qioptiq G061359000 2x
adapter for CCD camera to 1 post in-house
adapter for laser to 4 posts in-house
mount for lens 3 Thorlabs LMR2/M
mounts for half wave plates Thorlabs RSP1D/M 2
mounts for mirrors Thorlabs KM100 5x
mount for linear polarizer Thorlabs RSP05/M
mounts for beam splitters and SLM Thorlabs KM100PM/M 11x
clamping arms for beam splitters and SLM Thorlabs PM4/M 11x
posts for mounts, rail carriers and adapters Thorlabs TR75/M 29x
holders for posts Thorlabs PH50/M 29x
pedestals for holders Thorlabs BE1/M 29x
clamping forks for pedestals Thorlabs CF125 29x

Referências

  1. Richardson, D. J., Fini, J. M., Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics. 7 (5), 354-362 (2013).
  2. Kreysing, M., et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat. Commun. 5 (5481), 1-6 (2014).
  3. Winzer, P. J. Scaling optical fiber networks: Challenges and solutions. Opt. Photonics News. 26 (3), 28-35 (2015).
  4. Cižmár, T., Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 19 (20), 18871-18884 (2011).
  5. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8 (9), 1263-1268 (2005).
  6. Philipp, K., et al. Volumetric HiLo microscopy employing an electrically tunable lens. Opt. Express. 24 (13), 15029-15041 (2016).
  7. Büttner, L., Leithold, C., Czarske, J. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics. Opt. Express. 21 (25), 30653-30663 (2013).
  8. Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express. 23 (9), 12189-12206 (2015).
  9. Mahalati, R. N., Askarov, D., Wilde, J. P., Kahn, J. M. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt. Express. 20 (13), 14321-14337 (2012).
  10. Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B., Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express. 21 (10), 12881-12887 (2013).
  11. Cižmár, T., Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).
  12. Yaqoob, Z., Psaltis, D., Feld, M. S., Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics. 2 (2), 110-115 (2008).
  13. Ma, C., Xu, X., Liu, Y., Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photonics. 8 (12), 931-936 (2014).
  14. Lee, K., Lee, J., Park, J. H., Park, J. H., Park, Y. One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector. Phys. Rev. Lett. 115 (15), 153902 (2015).
  15. Cui, M., Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express. 18 (4), 3444-3455 (2010).
  16. Hillman, T. R., et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep. 3, (2013).
  17. Papadopoulos, I. N., Farahi, S., Moser, C., Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express. 20 (10), 10583-10590 (2012).
  18. Czarske, J. W., Haufe, D., Koukourakis, N., Büttner, L. Transmission of independent signals through a multimode fiber using digital optical phase conjugation. Opt. Express. 24 (13), 15128-15136 (2016).
  19. Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE Rev. 1 (1), 01800501-01800550 (2010).
  20. Gu, R. Y., Mahalati, R. N., Kahn, J. M. Design of flexible multi-mode fiber endoscope. Opt. Express. 23 (21), 26905-26918 (2015).
  21. Katz, O., Small, E., Bromberg, Y., Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics. 5 (6), 372-377 (2011).
check_url/pt/55407?article_type=t

Play Video

Citar este artigo
Haufe, D., Koukourakis, N., Büttner, L., Czarske, J. W. Transmission of Multiple Signals through an Optical Fiber Using Wavefront Shaping. J. Vis. Exp. (121), e55407, doi:10.3791/55407 (2017).

View Video