Summary

在转基因小鼠神经炎症的生物发光成像的α-共核蛋白纤丝的外围接种后

Published: April 13, 2017
doi:

Summary

外周注射的α-突触核蛋白原纤维进入的Tg的腹膜或舌的(M83 +/-:GFAP -luc +/-)小鼠,表达人α-突触核蛋白与家族性A53T突变和萤火虫萤光素酶,可诱发神经病理学,包括神经炎症在他们的中枢神经系统。

Abstract

为了研究错误折叠的α-突触核蛋白的朊病毒样行为,小鼠模型是需要的允许α-突触核蛋白prionoids,其对中枢神经系统(CNS)内的神经病理学快速和简单的传输。在这里,我们描述了α-突触核蛋白原纤维的那intraglossal或腹膜内注射入bigenic的Tg(M83 +/-:GFAP -luc +/-)小鼠中,过表达人类α-突触核蛋白与朊病毒蛋白启动子的突变A53T和萤火虫萤光所述启动子为胶质纤维酸性蛋白(GFAP),足以诱导神经病理学疾病。相较于纯合子TG(M83 + / +)小鼠发展在8个月,杂TG(M83 +/-:GFAP -Luc +/-)一岁开始严重的神经系统症状的动物,直到他们达到一个保持自由自发的疾病22个月的年龄。有趣的是,经由intraperitoneα-突触核蛋白原纤维的注射人路线诱导神经系统疾病与麻痹5的Tg(M83 +/-:GFAP -luc +/-)的四只小鼠用229±17天的中位数的温育时间。患病动物表现出磷酸化α突触核蛋白的严重存款在他们的大脑和脊髓。 α-突触核蛋白的累积是十二烷基肌氨酸钠不溶性且与泛素和P62共定位,并且伴随着导致星形细胞神经胶质增生和小神经胶质细胞的炎症反应。令人惊讶地,α-突触核蛋白原纤维进入舌的接种是引起疾病只有五组注射的动物示出后285天α-突触核蛋白病理的一个不太有效。我们的研究结果表明,通过经由腹膜内途径的intraglossal路线,更使接种是合适的,以诱导神经系统疾病与突触核蛋白病有关的标志中的Tg(M83 +/-:GFAP -luc +/-)小鼠。这为研究朊病毒样发病诱发的新模式由α-突触核蛋白prionoids更细节D。

Introduction

有越来越多的证据表明,α-突触核蛋白具有类似于那些朊病毒蛋白,特别是在其能力,以自种子和细胞之间,并沿着神经通路传播错误折叠特性。 α-突触核蛋白的这个属性也被称为“朊病毒状”或“prionoid”,并通过观察在移植实验,这表明从患病神经元错误折叠的α-突触核蛋白的传递率支撑到新移植健康的神经元1,2 ,3,4。还直接注射错误折叠的α-突触核蛋白的进入大脑或周围, 例如后肢肌肉或肠壁,导致α-突触核蛋白病理到的远端部分的扩展的CNS 5,6,7,<SUP类= “外部参照”> 8,9,10。我们分析了通过外周途径α-突触核蛋白prionoids的传输中更详细和处理的问题的错误折叠的α-突触核蛋白是否可以在单个intraglossal或腹膜内注射后neuroinvade CNS中,先前已被证明为朊病毒但不能用于错折叠的α-特征突触核蛋白。朊病毒于舌的注射后,CNS的神经侵染经由传播沿着通向舌下神经,它位于脑干11的细胞核中的舌片的舌下神经实现。作为小鼠模型,我们选择的Tg(M83 +/-:GFAP -luc +/-)小鼠过表达来自朊病毒启动子的人α-突触核蛋白的A53T突变体,和下GFAP启动子控制萤火虫萤光监测由星形胶质细胞活化生物发光,如先前在大脑中所示朊病毒感染的小鼠12。在我们的手中bigenic TG(M83 +/-:GFAP -Luc +/-)如已被他人13所示的小鼠没有发生疾病直到晚上11个月的年龄。经由intraglossal或腹膜内途径诱导的神经学疾病与大脑病理学和Tg为脊髓人类α-突触核蛋白原纤维的单次注射(M83 +/-:GFAP -luc +/-)支持这一假设小鼠α-突触核蛋白prionoids分享朊病毒14的重要特征。

Protocol

所有的程序,包括动物与北莱茵 – 威斯特伐利亚州环境局(LANUV)的动物保护委员会批准执行。动物饲养和照顾根据具有12小时光照/黑暗周期和食物和水自由进入的标准条件。 1.动物模型相互交叉的Tg半合子(GFAP -luc +/-)小鼠与半合子的Tg(M83 +/-)小鼠来生成半合子bigenic的Tg(M83 +/-:GFAP -luc +/-)小鼠<sup …

Representative Results

小鼠( 表1和图1):通过舌或bigenic的Tg的CNS(GFAP -luc +/- M83 +/-)腹膜诱导神经病理学α-突触核蛋白prionoids的外周注射。一个单次腹腔注射与α-突触核蛋白原纤维后,五只小鼠的4开发神经疾病具有229±17天的中位数的温育时间。出人意料的是,五只小鼠的一个开发CNS疾病intraglossal注射后285天α-突触核蛋白原纤维后。接种PBS没有…

Discussion

外周注射的α-突触核蛋白原纤维的成的Tg(M83 +/-:GFAP -luc +/-)的小鼠腹膜表示简便方法来诱导神经系统疾病伴有神经炎症概括突触核蛋白病的重要特征。类似地,舌注射表示在转基因小鼠为神经侵染另一个路径由α-突触核蛋白prionoids但效率较低。我们选择在注射后420天终止我们的实验,我们不能排除多个或所有的纤维注射的小鼠可在稍后的时间点已经发展疾病的可能性。?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢奥尔加·沙玛,特丽萨·亨特和的DZNE显微镜和动物设施的技术支持人员。

Materials

anti-actin antibody Merck Millipore MAB1501
anti-alpha-synuclein, phospho S129 antibody [pSyn#64] Wako 015-25191
anti-alpha-synuclein, phospho S129 antibody [EP1536Y] Abcam ab51253
anti-GFAP antibody Dako Z0334 01
anti-IBA-1 antibody Wako 019-19741
anti-Sequestosome-1 (p62) antibody Proteintech 18420-1-AP
anti-ubiquitin antibody [Ubi-1] Merck Millipore MAB1510
Phosphate-buffered saline (PBS) Invitrogen 14190169
Ketamine  Ratiopharm 100 mg/kg
Xylazine Ratiopharm 10 mg/kg
27-gauge syringe VWR 613-4900
Isoflurane  Piramal Healthcare PZN  4831850
Depilatory cream Veet
Secureline lab marker  Neolab 25040
D-luciferin potassium salt Acris LK10000 30 mg/mL stock solution
Thermomixer Eppendorf 5776671
Sonopuls Mini20 sonicator Bandelin 3648
IVIS Lumina II imaging system PerkinElmer
Living Image 3.0 Software PerkinElmer
Tg(M83+/-) mice or B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J mice The Jackson Laboratory 004479
Standard pattern forceps Fine Science Tools 11000-16
Narrow pattern forceps Fine Science Tools 11002-12
N-laurylasarcosyl Sigma L5125-100G
Optima Max-XP ultracentrifuge  Beckman Coulter TLA-110 rotor 
Thickwall polycarbonate tubes Beckman Coulter 362305
NuPAG Novex 4-12% Bis-Tris Midi Protein Gels Thermo Fisher Scientific WG1401BOX
HRP conjugated antibody Cayman Cay10004301-1
IR Dye 680 conjugated antibody  LI-COR Biosciences 926-68070
SuperSignal West Dura Extended Duration Substrate Thermo Fisher Scientific 34075
Stella 3200 imaging system Raytest
Odyssey infrared imaging system  LI-COR Biosciences
Tween 20  MP Biomedicals TWEEN201
Triton X-100 Sigma SA/T8787
Immobilon-FL PVDF membrane Merck Millipore IPFL00010
Xylol Sigma Roth
Hydrogen peroxide Sigma SA/00216763/000500 working solution 3%
Bovine serum albumine (BSA)  Thermo Fisher Scientific A3294-100G
Goat serum Thermo Fisher Scientific PCN5000
4,6-diamidino-2-phenylindole (DAPI) Thermo Fisher Scientific D1306 working dilution 1:50,000
Fluoromount media  Omnilab SA/F4680/000025
LSM700 confocal laser scanning microscope Carl Zeiss
HALT protease and phosphatase inhibitors Thermo Fisher Scientific  10516495
Precellys 24-Dual homogenizer  Peqlab 91-PCS24D
Alexa Fluor 488 conjugated antibody Thermo Fisher Scientific A31619
Alexa Fluor 594 conjugated antibody Thermo Fisher Scientific A11005
Pierce BCA Protein Assay Kit Thermo Fisher Scientific 10741395
Microtome RM2255 Leica
LSM700 confocal laser scanning microscope Carl Zeiss

Referências

  1. Aguzzi, A. Cell biology: Beyond the prion principle. Nature. 459 (7249), 924-925 (2009).
  2. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B., Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 14 (5), 504-506 (2008).
  3. Li, J. Y., et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 14 (5), 501-503 (2008).
  4. Hansen, C., et al. alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest. 121 (2), 715-725 (2011).
  5. Masuda-Suzukake, M., et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain. 136 (4), 1128-1138 (2013).
  6. Holmqvist, S., et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128 (6), 805-820 (2014).
  7. Luk, K. C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338 (6109), 949-953 (2012).
  8. Sacino, A. N., et al. Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol Commun. 1, 38 (2013).
  9. Sacino, A. N., et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A. 111 (29), 10732-10737 (2014).
  10. Mougenot, A. L., et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. 33 (9), 2225-2228 (2012).
  11. Bartz, J. C., Kincaid, A. E., Bessen, R. A. Rapid prion neuroinvasion following tongue infection. J Virol. 77 (1), 583-591 (2003).
  12. Tamgüney, G., et al. Measuring prions by bioluminescence imaging. Proc Natl Acad Sci U S A. 106 (35), 15002-15006 (2009).
  13. Watts, J. C., et al. Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A. 110 (48), 19555-19560 (2013).
  14. Breid, S., et al. Neuroinvasion of alpha-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation. J Virol. 90 (20), 9182-9193 (2016).
  15. Giasson, B. I., et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 34 (4), 521-533 (2002).
  16. Zhu, L., et al. Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett. 367 (2), 210-212 (2004).
  17. Bernis, M. E., et al. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol Commun. 3 (1), 75 (2015).
  18. Gunther, R., et al. Clinical testing and spinal cord removal in a mouse model for amyotrophic lateral sclerosis (ALS). J Vis Exp. (61), (2012).
  19. Jackson-Lewis, V., Przedborski, S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc. 2 (1), 141-151 (2007).
  20. Mathews, S. T., Plaisance, E. P., Kim, T. Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol. 536, 499-513 (2009).
  21. Kim, C., et al. Exposure to bacterial endotoxin generates a distinct strain of alpha-synuclein fibril. Sci Rep. 6, 30891 (2016).
  22. Keller, A. F., Gravel, M., Kriz, J. Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia. 57 (10), 1130-1142 (2009).
  23. Stöhr, J., et al. Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A. , (2014).
  24. Luk, K. C., et al. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 209 (5), 975-986 (2012).
  25. Recasens, A., et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 75 (3), 351-362 (2014).
  26. Sacino, A. N., et al. Induction of CNS alpha-synuclein pathology by fibrillar and non-amyloidogenic recombinant alpha-synuclein. Acta Neuropathol Commun. 1 (1), 38 (2013).
  27. Peelaerts, W., et al. alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 522 (7556), 340-344 (2015).
check_url/pt/55503?article_type=t

Play Video

Citar este artigo
Breid, S., Bernis, M. E., Tachu, J. B., Garza, M. C., Wille, H., Tamgüney, G. Bioluminescence Imaging of Neuroinflammation in Transgenic Mice After Peripheral Inoculation of Alpha-Synuclein Fibrils. J. Vis. Exp. (122), e55503, doi:10.3791/55503 (2017).

View Video