Summary

图案蛋白质和细胞的通用的方法

Published: February 26, 2017
doi:

Summary

This report describes a simple, easy to perform technique, using low pressure vacuum, to fill microfluidic channels with cells and substrates for biological research.

Abstract

Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

Introduction

在组织工程和生物传感,控制在微米尺度的蛋白质和细胞的空间组织的能力,已成为在过去的四十年里1,2,3越来越重要。蛋白质和细胞的精确空间组织已经允许研究者检查包含相似或不同类型的细胞,以引导细胞生长,和固定生物分子的生物传感器4,5,6,7,8的制造电池和基板之间的相互作用 9。

图案蛋白目前的方法包括光图案和微接触印刷。光图案利用其在暴露交联ULTR光敏材料紫色(UV)光。冲着光掩模(由透明区域的较深区域,以防止UV光透射)的UV光使在随后可被用于生物材料或电池10,11的后续附着特定区域交联。虽然这种方案是非常准确的,并允许培养表面的地形的精确控制,它是有限的,可以通过UV辐射12被图案化UV敏感的生物分子。微接触印刷是形成图案的特定蛋白质13,14的另一种流行的方法。在该方法中,聚二甲基硅氧烷(PDMS)印模与多种表面改性试剂中所选择的生物分子基底的溶液中浸泡前处理。它然后轻轻按压到玻璃盖玻片或其它表面从而“冲压”的生物分子上的培养物表面。何wever,冲压仅限于可以的PDMS压模15传送以及生物分子的润湿性的表面的材料的类型。

细胞的直接图案化可以更加困难,并依赖于复杂的方法,例如可切换基板,基于模版的方法,或图案形成具有特定细胞粘附分子16,17。这些方法是在自己的能力图案细胞由于缺乏兼容细胞粘附基底的限制,该方法的不相容性与敏感的生物细胞和约束,不一致性在再现图案化,并且该过程的复杂性工作。例如,与可切换的基板,定制基材需要被设计为每一个细胞类型,在暴露于切换它们遵守特定的细胞类型,而不降解到UV光和热在过程17使用的,< SUP类=“外部参照”> 18,19,20。基于模板图案的方法是在自己的能力格局细胞多才多艺的;然而,它难以制造的PDMS模具在使用16,21中的适当的厚度。细胞进入的PDMS微流体通道的直接注射有一些优点,如:1)缓解微流体通道的制造和2),用于许多不同的细胞和基质的适宜性。然而,在注射过程中空气气泡捕捉由于PDMS的不使用等离子体清洗,或其他方法来减少气泡的疏水性的普遍问题,使得难以一致地创建在玻璃或塑料表面21图案化的细胞。

这项工作扩展了毛细管微模塑22,23,小姑娘=“外部参照”> 24,25,26,并报告给注射蛋白质和细胞悬液到微通道的方法。此处所使用的方法展示衬底的图案化和特定细胞类型的直接和间接的构图。该技术克服了PDMS的疏水性高,并采取的PDMS 27的透气性的优点消除气泡的任一底物或细胞注射期间的存在。本文证明了具有几种不同的底物和细胞类型的使用的技术的。本文还使用常规的光刻法以及一种简单和低成本的粘合带的方法在资源有用有限设置28个 ,29突出的模具的制造中用于软光刻。

Protocol

注意:使用前请咨询所有相关的材料安全数据表(MSDS)。一些在该协议中使用的化学品是有毒和致癌性。使用有毒或酸/碱材料时,请使用所有适当安全操作规范(通风橱,手套箱)和个人防护装备(护目镜,手套,实验室外套,全长裤,封闭趾鞋)。 1.制造主模具软光刻使用光刻绘制使用计算机辅助设计(CAD)绘图工具的微通道的布局。 使用激光掩膜写入空?…

Representative Results

此方法允许蛋白质和使用具有尺寸小至10微米的和可用的设备中几乎所有的生物实验室死胡同微流体通道,一旦母模是由细胞的间接形成图案的图案形成。这种技术可以使用传统的软光刻法,或用胶带的制造( 图1)28,29中创建的PDMS微流体通道创建的PDMS微流体通道被利用。之前我们已经证实在神经元细胞在光感受?…

Discussion

而常规的光刻是用于创建模具软光刻,设备,材料,和需要使用传统的光刻技术的良好建立的技术是不容易获得的大多数实验室。对于没有访问这些资源的实验室,我们已经提出了胶带制造为具有相对简单的功能,对于微流体装置产生的模具的方法。这种方法允许任何实验室创建和利用用于研究目的使用现成的工具微流体装置。粘合带的方法可以用低成本的桌面乙烯基切刀31得?…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究经费是由新泽西州委员会脊髓研究(NJCSCR)(以FHK)提供,授予CSCR14IRG005(到BLF),美国国立卫生研究院授予R15NS087501(以CHC),和FM柯比基金会(以ETA)。

Materials

CorelDRAW X4 CAD Drawing Tools Corel Corporation, Canada X4 Version 14.0.0.701 CAD tool used to draw the layout of the microfluidic device
Laser Printer HP Hewlett Packard, CA 1739629 Used to print the layout of microfluidic device for adhesive tape technique
Bel-Art Dessicator Fisher Scientific, MA 08-594-16B Used to degass the PDMS mixture
Adhesive Scotch Tape 3M Product, MN Tape 600 Used to fabricate adhesive tape Master
PDMS Sylgard 184 Dow Corning, MI 1064291 Casting polymer
Petri Dish Fisher Scientific, MA 08-772-23 Used to keep the mold to cast with PDMS
Stainless steel Scalpel (#3) with blade (# 11) Feather Safety Razor Co. Ltd. Japan 2976#11 Used to cut the PDMS
Tweezers Ted Pella, CA 5627-07 Used to handle the PDMS cast during peeling
Glass slides Fisher Scientific, MA 12-546-2 Used as surface to pattern the Substrate
Glass slides Fisher Scientific, MA 12-544-4 Used as surface to pattern the Substrate
Rubber Roller Dick Blick Art Materials, IL 40104-1004 Used to attach adhesive tape on glass without trapping air bubbles
Laser Mask Writer Heidelberg Instruments, Germany DWL66fs Used to fabricate quartz mask used in photolithography fabrication process
EVG Mask Aligner (Photolithography UV exposure tool) EV Group, Germany EVG 620T(B) Used to expose the photoresist to UV light
Spin Coater Headway Headway Research Inc, TX PWM32-PS-CB15PL Used to spin coat the photoresist on silicon wafer
Photoresists SU-8 50 MicroChem, MA Y131269 Negative photoresist used for mold fabrication
SU-8 Devloper MicroChem, MA Y020100 Photoresist developer
Tridecafluoro-1,1,2,2-Tetrahydrooctyl-1-Trichlorosilane UCT Specialties, PA T2492-KG Coat mold to avoid PDMS adhesion
Isopropanol Sigma-Aldrich, MO 190764 Cleaning Solvent
Ethanol Sigma-Aldrich, MO 24102 Sterilization Solvent
Poly-D-Lysine hydrobromide (PDL) Sigma-Aldrich, MO P0899-10MG PDL solution is made at 0.1 mg/mL in Sodium Tetraborate Buffer
Laminin Sigma-Aldrich, MO L2020 Laminin aliquoted into 10 µL aliquots and diluted to 20 µg/µL in PBS prior to use
BSA Fisher Scientific, MA BP1605100 Cell culture
C2C12 Myoblast cell lline ATCC, VA CRL-1722 Used to demonstrate C2C12 patterning
PC12 Cell Line ATCC, VA CRL-1721 Used to demonstrate PC12 patterning
Collagen type 1, rat tail BD Biosciences 40236 Cell culture
DMEM GIBCO, MA 11965-084 Cell culture
Horse Serum, heat inactivated Fisher Scientific, MA 26050-070 Cell culture
Phalloidin-tetramethylrhodamine B isothiocyanate (TRITC) Sigma-Aldrich, MO P1951 To label cells
Calcein-AM live dead cell Assay kit Invitrogen, MA L-3224 Cell viability Assay
Biopsy Hole Punch Ted Pella, CA 15110-10 Punched hole in PDMS

Referências

  1. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials. 20 (23-24), 2363-2376 (1999).
  2. Lin, R. Z., Ho, C. T., Liu, C. H., Chang, H. Y. Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J. 1 (9), 949-957 (2006).
  3. Veiseh, M., Zareie, M. H., Zhang, M. Highly Selective Protein Patterning on Gold-Silicon Substrates for Biosensor Applications. Langmuir. 18 (17), 6671-6678 (2002).
  4. Kung, F., Wang, J., Perez-Castillejos, R., Townes-Anderson, E. Position along the nasal/temporal plane affects synaptic development by adult photoreceptors, revealed by micropatterning. Integr Biol. 7 (3), 313-323 (2015).
  5. Dickinson, L. E., Lutgebaucks, C., Lewis, D. M., Gerecht, S. Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro. Lab Chip. 12 (21), 4244-4248 (2012).
  6. Khademhosseini, A., et al. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials. 27 (36), 5968-5977 (2006).
  7. Bogdanowicz, D. R., Lu, H. H. Studying cell-cell communication in co-culture. Biotechnol J. 8 (4), 395-396 (2013).
  8. Choi, Y., Lee, S. Guided cell growth through surface treatments. J of Mech Sci Technol. 19 (11), 2133-2137 (2005).
  9. Hwang, I. -. T., et al. Efficient Immobilization and Patterning of Biomolecules on Poly(ethylene terephthalate) Films Functionalized by Ion Irradiation for Biosensor Applications. ACS Appl Mater Interf. 3 (7), 2235-2239 (2011).
  10. Clark, P., Britland, S., Connolly, P. Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J Cell Sci. 105 (1), 203-212 (1993).
  11. Théry, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci. 123 (24), 4201-4213 (2010).
  12. Douvas, A., et al. Biocompatible photolithographic process for the patterning of biomolecules. Biosens Bioelectron. 17 (4), 269-278 (2002).
  13. Alom, R. S., Chen, C. S. Microcontact printing: A tool to pattern. Soft Matter. 3 (2), 168-177 (2007).
  14. Essö, C. Modifying Polydimethylsiloxane (PDMS) surfaces. Institutionen för biologi och kemiteknik. , (2007).
  15. Zhou, J., Ellis, A. V., Voelcker, N. H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis. 31 (1), 2-16 (2010).
  16. Folch, A., Jo, B. H., Hurtado, O., Beebe, D. J., Toner, M. Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res. 52 (2), 346-353 (2000).
  17. Yeo, W. S., Yousaf, M. N., Mrksich, M. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J Am Chem Soc. 125 (49), 14994-14995 (2003).
  18. Bhatia, S. N., Toner, M., Tompkins, R. G., Yarmush, M. L. Selective adhesion of hepatocytes on patterned surfaces. Ann N Y Acad Sci. 745, 187-209 (1994).
  19. Song, E., Kim, S. Y., Chun, T., Byun, H. -. J., Lee, Y. M. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 27 (15), 2951-2961 (2006).
  20. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A., Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials. 23 (2), 561-567 (2002).
  21. Takayama, S., et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci U S A. 96 (10), 5545-5548 (1999).
  22. Kim, D. S., Lee, K. -. C., Kwon, T. H., Lee, S. S. Micro-channel filling flow considering surface tension effect. J of Micromech Microeng. 12 (3), 236 (2002).
  23. Kim, E., Xia, Y., Whitesides, G. M. Micromolding in Capillaries: Applications in Materials Science. J Am Chem Soc. 118 (24), 5722-5731 (1996).
  24. Kim, E., Xia, Y. N., Whitesides, G. M. Polymer Microstructures Formed by Molding in Capillaries. Nature. 376 (6541), 581-584 (1995).
  25. Jeon, N. L., Choi, I. S., Xu, B., Whitesides, G. M. Large-area patterning by vacuum-assisted micromolding. Adv Mater. 11 (11), 946 (1999).
  26. Shrirao, A. B., et al. System and method for novel microfluidic device. US patent. , (2010).
  27. Merkel, T. C., Bondar, V. I., Nagai, K., Freeman, B. D., Pinnau, I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B Polym Phys. 38 (3), 415-434 (2000).
  28. Shrirao, A. B., Hussain, A., Cho, C. H., Perez-Castillejos, R. Adhesive-tape soft lithography for patterning mammalian cells: application to wound-healing assays. Biotechniques. 53 (5), 315-318 (2012).
  29. Shrirao, A. B., Perez-Castillejos, R. Chips & tips: simple fabrication of microfluidic devices by replicating scotch-tape masters. Lab Chip. , (2010).
  30. Anil, B. S., Frank, H. K., Derek, Y., Cheul, H. C., Ellen, T. -. A. Vacuum-assisted fluid flow in microchannels to pattern substrates and cells. Biofabrication. 6 (3), 035016 (2014).
  31. Yuen, P. K., Goral, V. N. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab on a Chip. 10 (3), 384-387 (2010).
  32. Wang, L., et al. Self-loading and cell culture in one layer microfluidic devices. Biomed Microdevices. 11 (3), 679-684 (2009).
  33. Feng, H., et al. Survival of mammalian cells under high vacuum condition for ion bombardment. Cryobiology. 49 (3), 241-249 (2004).
  34. Haubert, K., Drier, T., Beebe, D. PDMS bonding by means of a portable, low-cost corona system. Lab on a Chip. 6 (12), 1548-1549 (2006).
  35. Fan, D. -. H., Yuan, S. -. W., Shen, Y. -. M. Surface modification with BSA blocking based on in situ synthesized gold nanoparticles in poly (dimethylsiloxane) microchip. Colloids Surf, B. 75 (2), 608-611 (2010).
  36. Hideshima, S., Sato, R., Inoue, S., Kuroiwa, S., Osaka, T. Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sens Actuator B-Chem. 161 (1), 146-150 (2012).
  37. Zheng, C., et al. High-throughput immunoassay through in-channel microfluidic patterning. Lab on a Chip. 12 (14), 2487-2490 (2012).
  38. MacLeish, P., Barnstable, C., Townes-Anderson, E. Use of a monoclonal antibody as a substrate for mature neurons in vitro. Procs Nat Acad of Sci. 80 (22), 7014-7018 (1983).
  39. Suchodolskis, A., et al. Elastic properties of chemically modified baker’s yeast cells studied by AFM. Surf Interface Anal. 43 (13), 1636-1640 (2011).
check_url/pt/55513?article_type=t

Play Video

Citar este artigo
Shrirao, A. B., Kung, F. H., Yip, D., Firestein, B. L., Cho, C. H., Townes-Anderson, E. A Versatile Method of Patterning Proteins and Cells. J. Vis. Exp. (120), e55513, doi:10.3791/55513 (2017).

View Video