Summary

制备和<em>体外</em>磁化的表征的miR-改性内皮细胞

Published: May 02, 2017
doi:

Summary

这个手稿描述的miR的有效的,非病毒递送通过PEI / MNP矢量和它们的磁化与内皮细胞。因此,除了遗传修饰,该方法允许用于磁性细胞的指导和MRI可检测性。该技术可以被用来改善的治疗性细胞产品的特性。

Abstract

迄今为止,用于治疗心血管疾病的可用外科和药物治疗(CVD)是有限的,经常姑息。与此同时,基因和细胞的疗法可用于CVD处理极有希望的替代方法。然而,基因治疗的广泛临床应用极大地受到缺乏合适的基因递送系统的限制。的合适的基因递送载体的发展可以提供解决方案,以在细胞疗法目前的挑战。特别是,现有的缺点,例如,在受伤器官限定的效率和低的细胞保留,可以通过适当的细胞工程来克服移植( 遗传)之前进行。所提出的协议描述了使用聚乙烯亚胺的超顺磁性纳米颗粒(PEI / MNP)系递送载体的内皮细胞的有效且安全的瞬时变形。此外,算法和细胞表征方法定义。成功intracellu微RNA(MIR)到人脐静脉内皮细胞(HUVECs)的拉尔递送已经在不影响细胞生存力,功能,或者细胞间的通信被实现。此外,这种方法被证明会导致导入的外源的miR强大的功能效果。重要的是,这种基于MNP-矢量的应用确保细胞磁化,伴随磁靶向和非侵入性的MRI跟踪的可能性。这可以提供对于可以非侵入性地监测与MRI磁性引导,遗传工程细胞疗法的基础。

Introduction

基因和细胞治疗是必须要解决的CVD处理当前挑战的潜在的强大工具。尽管这两种方法,目前正在临床试验,他们还没有准备好广泛的临床应用1。值得注意的是,以解决基因和细胞治疗的挑战的共同方法是开发适合于临床应用的多官能基因递送载体。缺乏安全,高效的基因传递系统是基因治疗的主要关注点。同时,细胞产物的基因工程移植前可以克服细胞治疗的严重挑战,如低效率( 例如,在心脏字段,只有约5%的功能改善,实现后干细胞移植1 )和差保留/植入在损伤部位( 即,细胞保留低于5 – 10%几分钟到几小时内口服ST-应用,无论给药途径2,3,4)。

迄今为止,病毒载体大大超过在效率,这导致了在临床试验中其广泛应用方面非病毒系统(〜67%)5。然而,病毒载体携带在携带的遗传物质6的尺寸严重的风险,如免疫原性(和随后的炎症反应,有严重的并发症),致癌性,和限制。由于这些安全问题和病毒载体的生产成本高,使用非病毒系统的是在某些情况下7,8优选的。它特别适合用于需要瞬时遗传校正病症,诸如的调控血管生成( 例如,用于CVD处理)的生长因子的表达或国内配送疫苗的RY。

本组的递送系统通过结合支链25-kDa的聚乙烯亚胺(PEI),并通过生物素-链霉亲和相互作用9结合在一起的超顺磁性氧化铁纳米颗粒(MNP)而设计的。该载体是用于细胞基因工程,从而允许他们的移植之前同时磁化的潜在工具。后者提供了一种用于磁性引导/保持,这是特别有前途的今天,先进的磁性靶向技术正在研制成功10的基础。此外,所得到的磁响应的细胞必须是潜在的非侵入性通过磁共振成像(MRI)或磁性粒子成像11,12监测。

在PEI / MNP载体的情况下,聚胺保证了从低分子化因子核酸缩合,从而保护 s时,细胞载体内化和内体逃逸5。所述的MNP补充PEI的特性,不仅在磁性引导的方面,还通过降低已知的PEI毒性7,13,14。此前,PEI / MNP载体性质在输送效率( 即,质粒DNA和miRNA)和安全性方面,通过使用成纤维细胞和人类间质干细胞15,16调整。

在该手稿上PEI /的MNP的对于miRNA修饰细胞的生成应用程序的详细方案描述17。为了这个目的,将HUVEC被使用并且表示用于在体外血管生成一个建立的模型。他们是具有挑战性的转染,并很容易受到有毒影响18,19,屁股= “外部参照”> 20。另外,我们提供一种算法来评估这些细胞在体外 ,包括它们的定位,细胞间通讯,和MRI检测。

Protocol

从谁根据赫尔辛基宣言给他们的书面同意使用这种材料的研究得知,健康的妇女获得了细胞分离人类脐带产后 。罗斯托克大学的伦理委员会批准了提交研究报告(登记号:2011年的06,延长2013年9月23日)。 1.转染复合物的制备聚乙烯亚胺的生物素化(PEI)。 溶解在300磁力搅拌下支链PEI的超纯水中 – 400rpm下在室温(RT)24个小时并避光以获得0.18 1mM溶液。存?…

Representative Results

所提出的协议的主要目的是产生磁响应的miR-修饰的细胞,并进行其精确的表征( 图1)。其结果是,有效地转染的细胞中,响应于磁选择和指导和可检测的与MRI,应当获得。 首先,分离的内皮细胞的身份,通过与内皮细胞标记物CD31染色的典型(PECAM)( 图2A)和通过以在适当的基底膜基质( 图2…

Discussion

生产装载有超顺磁性纳米颗粒和其进一步磁控制的指导基因工程细胞的呈现在当前协议。这种策略的成功应用允许的细胞治疗的一些困难,例如在受伤区域2,3,4低保留和植入差分辨率,通过对移植提供靶向细胞产物。此外,同时引入适当选择的遗传物质的可促进细胞特性,从而可以增加功能性益处41。

<p…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢G·富尔达(电子显微镜中心,罗斯托克大学,德国)用于收购过滤顺磁纳米颗粒的TEM图像,并履行其X射线分析技术支持。在RTC罗斯托克进行的工作是由联邦教育与研究部德国(FKZ 0312138A,FKZ 316159和VIP + 03VP00241)和国家梅克伦堡 – 前波莫瑞州与欧盟结构基金(ESF / IV-WM-B34-支持0030/10和ESF / IV-BM-B35-0010 / 12)和由DFG(DA 1296-1),则湿热基金会和德国心脏基金会(F / 01/12)。弗兰克·威克霍斯特由欧盟第七框架计划的研究项目 “Nanomag” FP7-NMP-2013-大7的支持。

Materials

PEI 25 kDa Sigma Aldrich 408727
EZ-Link Sulfo-NHS-LC-Biotin Thermo Scientific 21335
PD-10 Desalting Columns GE Healthcare 17085101 Containing Sephadex G-25 Medium
Ninhydrin Reagent solution 2% Sigma Aldrich 7285
Glycine Sigma Aldrich 410225
Pierce Biotin Quantitation Kit Thermo Scientific 28005
 Microplate reader Model 680 Bio-Rad
Streptavidin MagneSphere Paramagnetic Particles Promega Z5481
Millex-HV PVDF Filter Merck SLHV013SL 0.45µm
Libra 120 transmission electron microscope  Zeiss Acceleration Voltage 120KV
Sapphire X-ray detector EDAX-Amatek
Cell culture plastic TPP
NHS-Esther Atto 565 ATTO-TEC GmbH AD 565-31
NHS-Esther Atto 488  ATTO-TEC GmbH AD 488-31
Cy5 miRNA Label IT kit Mirus Bio MIR 9650
Biotin Atto 565 ATTO-TEC GmbH AD 565-71
Collagense Type IV Gibco Thermo Scientific 17104019
Endothelial growth medium, EGM-2 Lonza CC-3156 & CC-4176
Penicillin/Streptomycin Thermo Scientific 15140122 100 U/ml, 100µg/ml
Matrigel BD Biosciences 356234
anti-PECAM-1 antibody Santa Cruz sc-1506
MS MACS columns Miltenyi Biotec  130-042-201
Near-IR Live/Dead Cell Stain Kit Thermo Scientific L10119
Cy3 Dye-Labeled Pre-miR Negative Control Thermo Scientific AM17120 "Cy3-miR" or "Cyanine-miR3" in the manuscript
Pre-miR miRNA Precursor Molecules – Negative Control  Thermo Scientific AM17110 "scr-miR" in the manuscript
Anti-hsa-miR92a-3p synthetic Inhibitor  Thermo Scientific AM10916
LSM 780 ELYRA PS.1 system Zeiss
Paraformaldehyde Sigma Aldrich 158127 4% solution in PBS
DAPI nuclear stain Thermo Scientific D1306
NucleoSpin RNA isolation Kit Machery-Nagel 740955
mirVana miRNA Isolation Kit Thermo Scientific AM1560
TaqMan MicroRNA Reverse Transcription Kit Thermo Scientific 4366596
StepOnePlus Real-Time PCR System Applied Biosystems
High-Capacity cDNA Reverse Transcription Kit Thermo Scientific 4368814
hsa-miR-92a TaqMan assay Thermo Scientific 000431 Mature miRNA Sequence: UAUUGCACUUGUCCCGGCCUGU
FastGene Taq Ready Mix Nippon Genetics LS27
ITGA5 TaqMan assay Thermo Scientific Hs01547673_m1
RNU6B TaqMan assay Thermo Scientific 001093
18S rRNA Endogenous Control Thermo Scientific 4333760F
Gelatin Sigma Aldrich G7041
CellTrace Calcein Red-Orange Thermo Scientific C34851
PBS Pan Biotech P04-53500
BSA Sigma Aldrich
MACS buffer Miltenyi Biotec  130-091-221
Agarose Sigma Aldrich A9539
7.1 Tesla animal MRI system Bruker Corporation A7906
ImageJ software National Institutes of Health upgraded with an AngiogenesisAnalyzer (NIH)
MPS device Bruker Biospin
Matlab software Mathworks
Ring Neodym Magnet  magnets4you GmbH RM-10x04x05-G ø 10 mm; remanescence is ~1.3T, coercivity ≥ 955 kA/m
Click-iT EdU Alexa Fluor 647 Imaging Kit Thermo Scientific C10340
FluorSave Reagent Merck 345789
Ultrasonic bath Bandelin electronic Type: RK 100 SH

Referências

  1. Behfar, A., Crespo-Diaz, R., Terzic, A., Gersh, B. J. Cell therapy for cardiac repair-lessons from clinical trials. Nat Rev Cardiol. 11 (4), 232-246 (2014).
  2. Zeng, L., Hu, Q., et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 115 (14), 1866-1875 (2007).
  3. Dib, N., Khawaja, H., Varner, S., McCarthy, M., Campbell, A. Cell therapy for cardiovascular disease: a comparison of methods of delivery. J Cardiovasc Transl Res. 4 (2), 177-181 (2011).
  4. Terrovitis, J., Lautamäki, R., et al. Noninvasive Quantification and Optimization of Acute Cell Retention by In Vivo Positron Emission Tomography After Intramyocardial Cardiac-Derived Stem Cell Delivery. J Am Coll Cardiol. 54 (17), 1619-1626 (2009).
  5. Villate-Beitia, I., Puras, G., Zarate, J., Agirre, M., Ojeda, E., Pedraz, J. L. First Insights into Non-invasive Administration Routes for Non-viral Gene Therapy. Gene Therapy – Principles and Challenges. , (2015).
  6. Nayerossadat, N., Maedeh, T., Ali, P. A. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 1, 27 (2012).
  7. Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., Anderson, D. G. Non-viral vectors for gene-based therapy. Nat Rev Genet. 15 (8), 541-555 (2014).
  8. Chira, S., Jackson, C. S., et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 6 (31), 30675-30703 (2015).
  9. Li, W., Ma, N., et al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med. 10 (8), 897-909 (2008).
  10. Muthana, M., Kennerley, A. J., et al. Use of magnetic resonance targeting to direct cell therapy to target sites in vivo. Nat Commun. 6, 1-11 (2013).
  11. Zheng, B., von See, M. P., et al. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics. 6 (3), 291-301 (2016).
  12. Almstätter, I., Mykhaylyk, O., et al. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics. 5 (7), 667-685 (2015).
  13. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. , (2016).
  14. Chen, J., Guo, Z., Tian, H., Chen, X. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev. 3, 16023 (2016).
  15. Schade, A., Delyagina, E., et al. Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. Int J Mol Sci. 14 (6), 10710-10726 (2013).
  16. Delyagina, E., Schade, A., et al. Improved transfection in human mesenchymal stem cells: effective intracellular release of pDNA by magnetic polyplexes. Nanomedicine. 9 (7), 999-1017 (2014).
  17. Voronina, N., Lemcke, H., et al. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA-An optimized targeting approach. Nanomedicine. 12 (8), 2353-2364 (2016).
  18. Hunt, M. A., Currie, M. J., Robinson, B. A., Dachs, G. U. Optimizing transfection of primary human umbilical vein endothelial cells using commercially available chemical transfection reagents. J Biomol Tech. 21 (2), 66-72 (2010).
  19. Zhang, J., Wang, Z., Lin, W., Chen, S. Gene transfection in complex media using PCBMAEE-PCBMA copolymer with both hydrolytic and zwitterionic blocks. Biomaterials. 35 (27), 7909-7918 (2014).
  20. Lim, J., Dobson, J. Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field. J Genet. 91 (2), 223-227 (2012).
  21. Moore, S., Stein, W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 211 (2), 907-913 (1954).
  22. Jones, D. L., Owen, A. G., Farrar, J. F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem. 34 (12), 1893-1902 (2002).
  23. Kircheis, R., Wightman, L., et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8 (1), 28-40 (2001).
  24. Green, N. M. A SPECTROPHOTOMETRIC ASSAY FOR AVIDIN AND BIOTIN BASED ON BINDING OF DYES BY AVIDIN. Biochem J. 94, 23 (1965).
  25. Haugland, R. P., You, W. W. Coupling of Antibodies with Biotin. Methods Mol Biol. 418, 13-23 (2008).
  26. Braunschweig, J., Bosch, J., Heister, K., Kuebeck, C., Meckenstock, R. U. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. J Microbiol Methods. 89 (1), 41-48 (2012).
  27. Andrade, &. #. 1. 9. 4. ;. L., Valente, M. A., Ferreira, J. M. F., Fabris, J. D. Preparation of size-controlled nanoparticles of magnetite. J Magn Magn Mater. 324 (10), 1753-1757 (2012).
  28. Barbaro, D., Di Bari, L., et al. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter. PLoS ONE. 10 (4), e0123159 (2015).
  29. Gaebel, R., Ma, N., et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 32 (35), 9218-9230 (2011).
  30. Martín de Llano, J. J., Fuertes, G., Torró, I., García Vicent, C., Fayos, J. L., Lurbe, E. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels. J Transl Med. 7, 30 (2009).
  31. Bonauer, A., Carmona, G., et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 324 (5935), 1710-1713 (2009).
  32. Wang, W., Li, W., et al. Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J Cell Mol Med. 15 (9), 1989-1998 (2011).
  33. Lemcke, H., Peukert, J., Voronina, N., Skorska, A., Steinhoff, G., David, R. Applying 3D-FRAP microscopy to analyse gap junction-dependent shuttling of small antisense RNAs between cardiomyocytes. J Mol Cell Cardiol. 98, 117-127 (2016).
  34. Cheng, K., Li, T. -. S., Malliaras, K., Davis, D. R., Zhang, Y., Marbán, E. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res. 106 (10), 1570-1581 (2010).
  35. Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. , A.3B.1-A.3B.2 (2001).
  36. Chorny, M., Alferiev, I. S., et al. Formulation and in vitro characterization of composite biodegradable magnetic nanoparticles for magnetically guided cell delivery. Pharm Res. 29 (5), 1232-1241 (2012).
  37. Poller, W., Löwa, N., et al. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy. J Biomed Nanotechnol. 12 (2), 337-346 (2016).
  38. Lobsien, D., Dreyer, A. Y., Stroh, A., Boltze, J., Hoffmann, K. T. Imaging of VSOP Labeled Stem Cells in Agarose Phantoms with Susceptibility Weighted and T2* Weighted MR Imaging at 3T: Determination of the Detection Limit. PLoS ONE. 8 (5), 1-10 (2013).
  39. Hernando, D., Kühn, J. -. P., et al. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging. 37 (3), 717-726 (2013).
  40. Soenen, S. J., Rivera-Gil, P., Montenegro, J. -. M., Parak, W. J., De Smedt, S. C., Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 6 (5), 446-465 (2011).
  41. Robert, D., Kirkton, N. B. Genetic Engineering and Stem Cells: Combinatorial Approaches for Cardiac Cell Therapy. IEEE Eng Med Biol Mag. 27 (3), 85 (2008).
  42. Chen, Y., Wang, W., et al. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine. 7, 359-368 (2012).
  43. Diener, Y., Jurk, M., et al. RNA-based, transient modulation of gene expression in human haematopoietic stem and progenitor cells. Sci Rep. 5, 17184 (2015).
  44. Müller, P., Voronina, N., et al. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells. Stem Cells Int. 2016, 1-16 (2016).
  45. Yang, H., Vonk, L. A., et al. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells. Eur J Pharm Sci. 53, 35-44 (2014).
  46. Chen, C. -. H., Sereti, K. -. I., Wu, B. M., Ardehali, R. Translational aspects of cardiac cell therapy. J Cell Mol Med. 19 (8), 1757-1772 (2015).
  47. Alaiti, M. A., Ishikawa, M., et al. Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med. 16 (10), 2413-2421 (2012).
  48. Landázuri, N., Tong, S., et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small. 9 (23), 4017-4026 (2013).
  49. Carenza, E., Barceló, V., et al. In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies. Nanomedicine. 10 (1), 225-234 (2014).
  50. Kyrtatos, P. G., Lehtolainen, P., et al. Magnetic Tagging Increases Delivery of Circulating Progenitors in Vascular Injury. JACC Cardiovasc Interv. 2 (8), 794-802 (2009).
  51. Huang, Z., Shen, Y., et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Res Ther. 4 (6), 149 (2013).
  52. Wu, X., Tan, Y., Mao, H., Zhang, M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine. 5, 385-399 (2010).
  53. Soenen, S. J. H., Nuytten, N., De Meyer, S. F., De Smedt, S. C., De Cuyper, M. High Intracellular Iron Oxide Nanoparticle Concentrations Affect Cellular Cytoskeleton and Focal Adhesion Kinase-Mediated Signaling. Small. 6 (7), 832-842 (2010).
  54. Cheng, K., Malliaras, K., et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant. 21 (6), 1121-1135 (2012).
  55. Vandergriff, A. C., Hensley, T. M., et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials. 35 (30), 8528-8539 (2014).
check_url/pt/55567?article_type=t

Play Video

Citar este artigo
Voronina, N., Lemcke, H., Wiekhorst, F., Kühn, J., Frank, M., Steinhoff, G., David, R. Preparation and In Vitro Characterization of Magnetized miR-modified Endothelial Cells. J. Vis. Exp. (123), e55567, doi:10.3791/55567 (2017).

View Video