Summary

利用N酰基修饰 Mannosamines 对唾液酸的代谢 Glycoengineering

Published: November 25, 2017
doi:

Summary

唾液酸是一种典型的单糖单位, 见于糖。它涉及过多的分子和细胞相互作用。在这里, 我们提出了一个方法来修改细胞表面唾液酸表达使用代谢 glycoengineering 与N-acetylmannosamine 衍生物。

Abstract

唾液酸是糖的重要组成部分, 如NO-糖或脂。由于它的位置在还原总站的寡糖和多糖, 以及其独特的化学特性, 唾液酸参与了多种不同的受体配体相互作用。通过改变唾液酸在细胞表面的表达, 将影响唾液酸依赖性的相互作用。这有助于研究唾液酸依赖性的相互作用, 并有可能以有益的方式影响某些疾病。通过代谢 glycoengineering (MGE), 可以调节唾液酸在细胞表面的表达。在这里, 细胞, 组织, 甚至整个动物都是用 C2-modified 衍生物的N-acetylmannosamine (ManNAc) 来处理的。这些氨基糖充当唾液酸前体分子, 因此被代谢到相应的唾液酸种类和表达的糖。应用这种方法对各种生物过程产生了有趣的影响。例如, 它可以大大减少唾液酸 (polySia) 在处理神经元细胞中的表达, 从而影响神经元的生长和分化。在这里, 我们展示了两个最常见的 C2-modified n-acylmannosamine 衍生物的化学合成, n-propionylmannosamine (ManNProp) 以及n-butanoylmannosamine (ManNBut), 并进一步显示这些非氨基糖可用于细胞培养实验。用高效液相色谱 (HPLC) 对改性唾液酸的表达进行了定量分析, 并通过质谱法进行了进一步的分析。利用唾液酸抗体对唾液酸表达的影响进行了免疫印迹。

Introduction

唾液酸是一种单糖, 通常可以在糖的还原总站找到, 如N-和O-糖或脂。在所有单糖中, 唾液酸具有独特的化学特性。它有一个 9 C 原子骨干, 一个羧基在 C-1 位置, 是 deprotonated, 从而负电荷在生理条件下, 和一个氨基功能的 C-5 位置。虽然超过50自然发生的唾液酸变种已被描述为迄今1, 在人类中发现的主要形式的唾液酸是N-乙酰酸 (Neu5Ac)。其他哺乳动物也表达了更高的数量的N-glycolylneuraminic 酸 (Neu5Gc)23

由于其暴露在糖的位置, 唾液酸参与了过多的受体-配体相互作用,例如,流感病毒对宿主细胞的血依赖性绑定4。具有重要生物学功能的唾液酸表位, 尤其在胚胎发生和神经系统中, 是唾液酸。唾液酸是一种高达200α28连接的唾液酸的聚合物。唾液酸的主要蛋白载体是神经细胞黏附分子 (分子)。唾液酸的表达调节了分子的粘附特性, 即唾液酸的表达减少了粘连, 增加了与神经系统的可塑性5

(聚) 唾液酸的表达变化最终会影响多种不同的生物相互作用。这可以用来研究已知的唾液酸相关过程的分子水平, 以揭示新的糖相互作用, 或探索可能的治疗方法。有不同的方法可利用在细胞表面上唾液酸的表示可以被调整, 例如治疗与唾液酸具体糖苷 (sialidases), 抑制酵素参与在唾液酸生物合成中6 ,7,8, 或击倒或更改唾液酸生物合成的关键酶的表达式9

另一种用于调节唾液酸表达的方法是 MGE (也称为代谢性寡糖工程, 教育部)。在这里, 细胞, 组织, 甚至动物都是用非衍生物的 ManNAc 来进行 C2-amino 修饰。作为前体分子的唾液酸, 在细胞摄取后, 这些 ManNAc 类似物是单向代谢到非唾液酸和可以表达的 sialylated 糖。使用含有脂肪 C2-modifications 的 ManNAc 衍生物 (如 ManNProp 或 ManNBut) 处理的细胞, 在其 propionylneuraminic10中合并n-Neu5Prop 酸 (butanoylneuraminic) 或n-Neu5But 酸 (糖),11. 通过引入 ManNAc C2-position 的功能组, 非的唾液酸可以通过施陶丁格结扎或叠氮化 alkine 加与荧光染料相结合, 从而在单元格表面上可视化12

这些非唾液酸的表达对许多生物过程有着耐人寻味的影响, 包括病原体感染、肿瘤细胞黏附和迁移、一般细胞黏附以及血管化和分化 (供审查请参见: Wratil et al.13). 有趣的是, MGE 与N-酰基修饰的 mannosamines 也可以用来干扰唾液酸的表达。唾液酸是由两种不同的 polysialyltransferases (ST8SiaII 和 ST8SiaIV) 产生的。已经证明, polysialyltransferase ST8SiaII 是由非自然的唾液酸前体抑制的, 如 ManNProp 或 ManNBut14,15。此外, 它已经证明在人类神经母细胞瘤 ManNProp 或 ManNBut 应用也减少 sialylation 总15

MGE 与N-酰基修饰 mannosamines 是一种易于应用的方法, 已成功使用, 不仅在哺乳动物和细菌细胞培养, 而且在整个动物的不同物种, 如线虫线虫16,斑马鱼17, 或鼠标18,19,20,21。特别是含脂肪修饰的 ManNAc 衍生物, 包括 ManNProp 和 ManNBut, 都是地细胞毒, 即使在 millimolar 浓度的培养基或血浆中也是如此。此外, 它们相对容易合成。

在这里, 我们提供了如何使用 MGE 与N-乙酰修饰 mannosamines 的详细信息。首先, 解释了这一领域中最广泛使用的两种 ManNAc 衍生物的化学合成, ManNProp 和 ManNBut。接下来, 我们将展示如何在体内实验中应用 MGE。以 ManNAc 衍生物为例, 选择了神经母细胞线凯利在治疗后唾液表位的表达减少。采用 HPLC 法对细胞表面的非唾液酸进行定量分析, 并通过质谱法进一步分析。

Protocol

1. 缓冲器和试剂的制备 3 mM 甲醇钠溶液的制备 在50毫升甲醇 (3 mM) 中, 在100毫升的玻璃瓶中溶解8.1 毫克钠醇, 搅拌棒。室温 (RT) 贮存数周。 三盐酸缓冲液的制备 结合8.766 克氯化钠, 157 毫克三盐酸, 146 毫克 EDTA 在100毫升玻璃瓶与搅拌棒和溶解在80毫升水。 将氢氧化钠 (1 米, 在水中) 或 HCl (20%, 在水中) 添加到搅拌液中, 同时观?…

Representative Results

在图 2中描述了荧光标记 Neu5Ac 和 Neu5Gc 标准的 HPLC 谱。使用本文所描述的方法, DMB 标记的 Neu5Gc 通常 elutes 在 7-9 分钟洗脱时间之间, 和 DMB-Neu5Ac 之间 10-12 分钟。色谱中的几个小峰通常出现在 2-6 分钟之间。这些峰值代表未 DMB 和反应中间体25。 图 3显示了单元格裂解…

Discussion

如果化学合成的 ManNAc 衍生物, ManNProp 和 ManNBut 通过质谱分析, 只有正确的质量峰值的两个标本应确定。因此, 可以假定产品的纯度超过99%。在裂解细胞的膜片段中检测到少量的 Neu5Gc, 通常不存在于人类细胞29。这最有可能发生通过一个打捞途径, 招募 Neu5Gc 从胎儿牛血清 sialoglycoconjugates 在媒体30。用唾液酸的天然前驱物进行生物合成, ManNAc, 大大降低了 Neu5Gc 表位?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢阮先生校对手稿和进行富有成效的讨论。此外, 我们感谢 j. Dernedde 和阮先生帮助我们准备视频拍摄。大多数视频镜头都是在 r. 罗腾堡实验室拍摄的。我们还感谢马克斯普朗克研究所的胶体和接口, 并为我们提供免费进入他们的质谱仪设施。RH 得到了 DFG (ProMoAge) 的支持。

Materials

Cells Sigma-Aldrich 92110411
RPMI medium Sigma-Aldrich R8758
75 ml tissue culture flasks Greiner 690175
48-well plates Corning 3548
FCS PAA A15-102
Pen/Strep Gibco 15140-122
Trypsine Gibco 15400-054
EDTA Roth X986.1
Tris Serva 37190.03
SDS Roth 2326.2
SDS-PAGE equipment (tanks, glassware etc., machine VWR SDS Gel/Blot
Acrylamide Roth 3019.1
Protein ladder Fisher Scientific 267620
Nitrocellulose GE Healthcare 10600002
Ponceau red Roth 5938.2
Milk powder Roth T145.3
ECL Millipore WBLUF 0500
0.5 ml Centrifugal Filter Unit with 3 kDa membrane Merck-Millipore UFC500324
15 mL centrifuge tubes Sigma-Aldrich (Corning) CLS430791-500EA
2-Mercaptoethanol Sigma-Aldrich M6250-10ML
2-Propanol Sigma-Aldrich 34965-1L HPLC gradient grade
4,5-Methylenedioxy-1,2-phenylenediamine dihydrochloride Sigma-Aldrich D4784-50MG
48 well, flat bottom tissue culture plate Sigma-Aldrich (Corning) CLS3548-100EA
50 mL centrifuge tubes Sigma-Aldrich (Corning) CLS430829-500EA
Acetonitrile Sigma-Aldrich 34967-1L HPLC gradient grade
Aprotinin from bovine lung Sigma-Aldrich A1153-10MG lyophilized powder, 3-8 TIU/mg solid
Butyryl chloride Sigma-Aldrich 109614-250G
C18 RP column Phenomenex 00F-4435-E0 110 Å, 3 µm particle size, 4.6 x 150 mm
D-Mannosamine hydrochloride Sigma-Aldrich M4670-1G
Dulbecco`s Phosphate Buffered Salt Solution PAN Biotech P04-36500
Ethylenediaminetetraacetic acid Sigma-Aldrich E9884-100G
Formic acid Sigma-Aldrich 56302-50ML-GL
Hydrochloric acid solution Sigma-Aldrich H1758-100ML 36.5-38.0%, in water
Leupeptin Sigma-Aldrich L2884-10MG
Methanol Carl-Roth T169.2 HPLC gradient grade
N-Acetyl-D-mannosamine Sigma-Aldrich A8176-250MG
N-Acetylneuraminic acid Sigma-Aldrich A0812-25MG
N-Glycolylneuraminic acid Sigma-Aldrich G9793-10MG
Phenylmethanesulfonyl fluoride Sigma-Aldrich P7626-250MG
Propionyl chloride Sigma-Aldrich P51559-500G
Safe-Lock Tubes, 1.5 mL, amber (light protection) Eppendorf 30120191
Safe-Lock Tubes, 1.5 mL, colorless Eppendorf 30120086
Sodium bisulfite solution Sigma-Aldrich 13438-1L-R-D 40%, in water
Sodium chloride Sigma-Aldrich 746398-500G-D
Sodium hydroxide Sigma-Aldrich 795429-500G-D
Sodium hydroxide solution Sigma-Aldrich 319511-500ML 1.0 M, in water
Sodium methoxide Sigma-Aldrich 164992-5G
Trifluoroacetic acid Sigma-Aldrich T6508-100ML-D
Tris hydrochloride Sigma-Aldrich T5941-100G
Trypsin 0.25 %/EDTA 0.02 % in PBS PAN Biotech P10-019100
Water Carl-Roth T905.1 HPLC gradient grade
Silica Gel 60 Carl-Roth 9779.1
HPLC Shimadzu

Referências

  1. Angata, T., Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem Rev. 102, 439-469 (2002).
  2. Schauer, R., Schoop, H. J., Faillard, H. On biosynthesis of glycolyl group of N-glycolylneuraminic acid. oxidation of N-acetyl group to glycolyl group. Hoppe-Seylers Zeitschrift Fur Physiologische Chemie. 349, (1968).
  3. Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem. 273, 15866-15871 (1998).
  4. Kelm, S., et al. Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. Eur J Biochem. 205, 147-153 (1992).
  5. Colley, K. J., Kitajima, K., Sato, C. Polysialic acid: Biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol. 49, 498-532 (2014).
  6. Rillahan, C. D., et al. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol. 8, 661-668 (2012).
  7. Wratil, P. R., et al. A Novel Approach to Decrease Sialic Acid Expression in Cells by a C-3-modified N-Acetylmannosamine. J Biol Chem. 289, 32056-32063 (2014).
  8. Nieto-Garcia, O., et al. Inhibition of the key enzyme of sialic acid biosynthesis by C6-Se modified N-acetylmannosamine analogs. Chem Sci. 7, 3928-3933 (2016).
  9. Keppler, O. T., et al. UDP-GlcNAc 2-epimerase: A regulator of cell surface sialylation. Science. 284, 1372-1376 (1999).
  10. Kayser, H., et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J Biol Chem. 267, 16934-16938 (1992).
  11. Keppler, O. T., et al. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J Biol Chem. 270, 1308-1314 (1995).
  12. Laughlin, S. T., Bertozzi, C. R. Imaging the glycome. Proc Natl Acad Sci U S A. 106, 12-17 (2009).
  13. Wratil, P. R., Horstkorte, R., Reutter, W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angewandte Chemie International Edition. 55, 9482-9512 (2016).
  14. Horstkorte, R., et al. Selective inhibition of polysialyltransferase ST8Siall by unnatural sialic acids. Exp Cell Res. 298, 268-274 (2004).
  15. Gnanapragassam, V. S., et al. Sialic Acid Metabolic Engineering: A Potential Strategy for the Neuroblastoma Therapy. PLOS ONE. 9, 10 (2014).
  16. Agard, N. J., Prescher, J. A., Bertozzi, C. R. A strain-promoted 3+2 azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J Am Chem Soc. 126, 15046-15047 (2004).
  17. Dehnert, K. W., et al. Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry. ChemBioChem. 13, 353-357 (2012).
  18. Prescher, J. A., Dube, D. H., Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature. 430, 873-877 (2004).
  19. Neves, A. A., et al. Imaging sialylated tumor cell glycans in vivo. Faseb Journal. 25, 2528-2537 (2011).
  20. Vogt, J., et al. Homeostatic regulation of NCAM polysialylation is critical for correct synaptic targeting. Cell Mol Life Sci. 69, 1179-1191 (2012).
  21. Qiu, L., et al. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells. Oncotarget. 6, 5195-5203 (2015).
  22. Erikson, E., et al. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner. J Biol Chem. 290, 27345-27359 (2015).
  23. Klein, A., Diaz, S., Ferreira, I., Lamblin, G., Roussel, P., Manzi, A. E. New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology. 7, 421-432 (1997).
  24. Laemmli, U. K. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 227, (1970).
  25. Orozco-Solano, M. I., Priego-Capote, F., Luque de Castro, M. D. Ultrasound-assisted hydrolysis and chemical derivatization combined to lab-on-valve solid-phase extraction for the determination of sialic acids in human biofluids by µ-liquid chromatography-laser induced fluorescence. Analytica Chimica Acta. 766, 69-76 (2013).
  26. Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M., Ohkura, Y. Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem. 164, 138-145 (1987).
  27. İzzetoğlu, S., Şahar, U., Şener, E., Deveci, R. Determination of sialic acids in immune system cells (coelomocytes) of sea urchin, Paracentrotus lividus, using capillary LC-ESI-MS/MS. Fish Shellfish Immunol. 36, 181-186 (2014).
  28. Wolf, S., et al. Chemical Synthesis and Enzymatic Testing of CMP-Sialic Acid Derivatives. ChemBioChem. 13, 2605-2615 (2012).
  29. Sonnenburg, J. L., Altheide, T. K., Varki, A. A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology. 14, 339-346 (2004).
  30. Oetke, C., et al. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. Eur J Biochem. 268, 4553-4561 (2001).
  31. Buttner, B., et al. Biochemical engineering of cell surface sialic acids stimulates axonal growth. J Neuro. 22, 8869-8875 (2002).
  32. Kontou, M., Weidemann, W., Bork, K., Horstkorte, R. . Biological Chemistry. 390, 575 (2009).
  33. Tanaka, F., et al. Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non small cell lung cancer. Cancer Res. 60, 3072-3080 (2000).
  34. Cheng, B., Xie, R., Dong, L., Chen, X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. ChemBioChem. 17, 11-27 (2016).
  35. Collins, B. E., Fralich, T. J., Itonori, S., Ichikawa, Y., Schnaar, R. L. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology. 10, 11-20 (2000).
  36. Schwartz, E. L., Hadfield, A. F., Brown, A. E., Sartorelli, A. C. Modification of sialic acid metabolism of murine erythroleukemia cells by analogs of N-acetylmannosamine. Biochimica Et Biophysica Acta. 762, 489-497 (1983).
  37. Jones, M. B., et al. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol Bioeng. 85, 394-405 (2004).
  38. Bayer, N. B., et al. Artificial and Natural Sialic Acid Precursors Influence the Angiogenic Capacity of Human Umbilical Vein Endothelial Cells. Molecules. 18, 2571-2586 (2013).
  39. Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W., Horstkorte, R. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J Biol Chem. 273, 19146-19152 (1998).
  40. Laughlin, S. T., Bertozzi, C. R. In Vivo Imaging of Caenorhabditis elegans Glycans. ACS Chem Biol. 4, 1068-1072 (2009).
  41. Laughlin, S. T., Baskin, J. M., Amacher, S. L., Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 320, 664-667 (2008).
  42. Chang, P. V., et al. Copper-free click chemistry in living animals. Proc Natl Acad Sci U S A. 107, 1821-1826 (2010).
  43. Gagiannis, D., Gossrau, R., Reutter, W., Zimmermann-Kordmann, M., Horstkorte, R. Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochimica Et Biophysica Acta-General Subjects. 1770, 297-306 (2007).
  44. Rong, J., et al. Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. J Am Chem Soc. 136, 17468-17476 (2014).
  45. Galuska, S. P., et al. Quantification of Nucleotide-Activated Sialic Acids by a Combination of Reduction and Fluorescent Labeling. Anal Chem. 82, 4591-4598 (2010).
  46. Harms, E., Reutter, W. Half-Life Of N-Acetylneuraminic Acid In Plasma-Membranes Of Rat-Liver And Morris Hepatoma 7777. Cancer Res. 34, 3165-3172 (1974).
  47. Kolarich, D., Lepenies, B., Seeberger, P. H. Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol. 16, 214-220 (2012).
  48. Preidl, J. J., et al. Fluorescent Mimetics of CMP-Neu5Ac Are Highly Potent, Cell-Permeable Polarization Probes of Eukaryotic and Bacterial Sialyltransferases and Inhibit Cellular Sialylation. Angewandte Chemie-International Edition. 53, 5700 (2014).
  49. Macauley, M. S., et al. Systemic Blockade of Sialylation in Mice with a Global Inhibitor of Sialyltransferases. J Biol Chem. 289, 35149-35158 (2014).
  50. Jorge, P., Abdul-Wajid, A. Sialyl-Tn-KLH, glycoconjugate analysis and stability by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Glycobiology. 5, 759-764 (1995).
  51. Lin, S. L., Inoue, Y., Inoue, S. Evaluation of high-performance anion-exchange chromatography with pulsed electrochemical and fluorometric detection for extensive application to the analysisof homologous series of oligo- and polysialic acids in bioactive molecules. Glycobiology. 9, 807-814 (1999).
  52. Pan, Y. B., Chefalo, P., Nagy, N., Harding, C., Guo, Z. W. Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J Med Chem. 48, 875-883 (2005).
  53. Chefalo, P., Pan, Y. B., Nagy, N., Guo, Z. W., Harding, C. V. Efficient metabolic engineering, of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Bioquímica. 45, 3733-3739 (2006).
  54. Lee, S., et al. Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry. ACS Nano. 8, 2048-2063 (2014).
  55. Koulaxouzidis, G., Reutter, W., Hildebrandt, H., Stark, G. B., Witzel, C. In vivo stimulation of early peripheral axon regeneration by N-propionylmannosamine in the presence of polysialyltransferase ST8SIA2. J Neural Transm. , 1-9 (2015).
  56. Gnanapragassam, V. S., et al. Correction: Sialic Acid Metabolic Engineering: A Potential Strategy for the Neuroblastoma Therapy. PLOS ONE. 11, e0154289 (2016).
check_url/pt/55746?article_type=t

Play Video

Citar este artigo
Wratil, P. R., Horstkorte, R. Metabolic Glycoengineering of Sialic Acid Using N-acyl-modified Mannosamines. J. Vis. Exp. (129), e55746, doi:10.3791/55746 (2017).

View Video