Summary

从白蛉提取内分泌物的方法<em> Bemisia tabaci</em

Published: June 19, 2017
doi:

Summary

在这里,我们提出了通过解剖和过滤从粉虱烟粉虱中分离内分泌物的方案。扩增后,DNA样品适用于后续测序和研究内共生与粉虱之间的共生关系。

Abstract

细菌共生体与宿主形成亲密关系,在大多数情况下赋予宿主优势。基因组信息对于研究其宿主细菌共生体的功能和进化至关重要。由于大多数共生体不能在体外培养 ,所以分离足够量的细菌用于基因组测序的方法是非常重要的。在粉虱Bemisia tabaci中 ,已经确定了许多内生子,并且通过多种方法预测害虫的发育和繁殖是重要的。然而,支持协会的机制仍然很大程度上是未知的。障碍部分来自于粉虱中的内分泌物,主要是抑制细菌,难以与宿主细胞分离。在这里我们报告一个主要通过解剖的粉虱B.烟粉虱鉴定,提取和纯化内分泌物的分步骤方案开和过滤。通过该方法制备的内含子样品虽然仍然是不同内分泌物种的混合物,但适用于随后的基因组测序和分析烟粉虱内共生菌的可能作用。这种方法也可用于从其他昆虫中分离内分泌物。

Introduction

与节肢动物形成密切共生关系的细菌广泛存在于节肢动物中。在几乎每个发育阶段5中 ,内分泌已被证明影响宿主的方面,如营养代谢,繁殖,对环境胁迫2,3,4 等的反应。然而,支持协会的机制仍然很大程度上是未知的。研究细菌的潜在功能和作用时,基因组学是重中之重。一些基本信息, 分类学状态,功能基因,代谢途径,分泌系统,可以从基因组序列推断出来,揭示了共生体在共生中的潜在作用。随着高通量测序的发展,大量的细菌基因组已被测序各种功能揭示6

内含子在半ter子中是至关重要的,如蚜虫7 ,臭虫8 ,木虱9 ,褐飞虱10和蝉11 。例如,作为专性共生体的蚜虫中的Buchnera已被证明参与必需氨基酸生物合成,以及来自蚜虫基因组12的基因。此外, Buchnera的转录调控也显示13 。在木麻黄中, 卡桑奈尔被测序,并且是发现的最小的细菌基因组14 。所有这些内含子的标志都是基于基因组序列推断的。由于这些内生子宫内膜不能在体外培养 ,因此已经采用了几种方法来分离足够的细菌uencing。在蚜虫中,通过离心和过滤提取内生子,并进行进一步的基因组和转录组学分析。在褐飞虱中,内共生连同整个昆虫基因组10进行测序。

粉虱是一种含有超过35种形态不可区分物种(隐蔽物种)的物种,其中两种入侵物种已经入侵到世界各地,对农业生产造成了巨大的危害15 。值得注意的是, 烟粉虱物种内的内生梭菌在害虫16的发育中已显示出重要性。到目前为止,在粉虱中已经鉴定出8个内含子,其中包括专性共生体, Candidatus Portiera aleyrodidarum和七个次生共生体Hamiltonella,立克次ArsenophonusCardinium ,Wolbachia, FritscheaHemipteriphilus定义为17,18

与以前描述的半扁桃不同,粉虱烟粉虱是一只极小的昆虫,长度只有1毫米。大多数内生子体被限制在细菌19 (含有共生体的特殊细胞,其进一步在烟粉虱中形成细菌)。此外,这些内生子宫内膜不能在体外培养 。从烟粉虱获得内生菌的唯一方法是将细菌分解出来。然而,解剖有困难。首先,脆弱的细菌总是与粉虱的其他组织连接,这是很难分离的。其次,粉虱的微小尺寸限制了足够细菌的分离。第三,内生菌群聚集在细菌中,使获得单一种细菌非常复杂。

<p class ="“jove_content”">这里,我们报告一个简单而便宜的方案来隔离粉虱内分泌物用于随后的宏基因组测序。通过解剖,纯化和扩增,可以获得足够的内含子DNA,并可以确认细菌种类。所描述的方案可以在其他节肢动物中类似地使用。

Protocol

白蛉饲养和隐蔽物种识别在27±1℃,70±10%湿度和14小时光:10小时黑暗条件的标准条件下,将棉花棉属 (Malvaceae)(马鞭草科)(cv。Zhe-Mian 1973)保存在笼中。 收集单个成年粉虱,并在30μL裂解缓冲液(10mM Tris,pH 8.4,50mM KCl,0.45%[wt / vol] Tween-20,0.2%[wt / vol]明胶,0.45%[vol / vol] Nonidet P 40,60g / mL蛋白酶K)。 将匀浆在65℃孵育1小时,然后100℃孵育10分钟。 注意:如?…

Representative Results

以烟草烟草复合体的中东亚洲1号(MEAM1)为例进行说明。用于饲养粉虱的棉花和几个发育阶段的粉虱显示在图1中,包括棉花植物,成年粉虱和粉虱的第1, 第 2和第 4龄的若虫(3龄的若虫似乎与第4龄若虫相似) )。显然,第4龄若虫比第1龄和第2龄的若虫大( 图1 )。 MEAM1中Portiera和Hamiltonella的 FISH?…

Discussion

Since the endosymbionts within whiteflies cannot be cultured in vitro, dissection and assembling bacteriocytes is an effective way to obtain enough genetic material of endosymbionts. Before dissection, the species of whitefly and endosymbionts involved should be explicitly confirmed. The whitefly B. tabaci is a species complex with more than 35 morphologically indistinguishable species and different cryptic species may contain different endosymbionts. Portiera is uniformly harbored as an obliga…

Declarações

The authors have nothing to disclose.

Acknowledgements

本研究的财政支持由国家重点研究发展计划(2016YFC1200601)和国家自然科学基金(31390421)提供。

Materials

Taq DNA polymerase Takara R001A including rTaq, 10×Buffer and dNTP
Gel DNA extraction kit Qiagen 28704
DNA sample sequencing system ABI ABI-3730XL
Microtome Leica EM UC7
Transmission electron microscopy Hitachi H-7650 TEM
Stereo microscope Zeiss Stemi 2000-C
20 μL microloader Eppendorf F2771951
Filter holder Millipore SX0001300
Filter membrane filter Millipore SMWP001300 5.0 μm SMWP
REPLI-g UltraFast Mini Kit Qiagen 150033 DNA amlification kit
NanoDrop Thermo Scientific NanoDrop 2000
Qubit Fluorometer Thermo Fisher Scientific Q33216
Genome Sequencer Illumina Hiseq 2000

Referências

  1. Buchner, P. Endosymbiosis of animals with plant microorganisms. J. Basic Microbiol. 7 (2), (1967).
  2. Sloan, D. B., Moran, N. A. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol. Letters. 8 (6), 986-989 (2012).
  3. Stouthamer, R., Breeuwer, J. A., Hurst, G. D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102 (1999).
  4. Brumin, M., Kontsedalov, S., Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 18 (1), 57-66 (2011).
  5. Hansen, A. K., Degnan, P. H. Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 8, 2490-2502 (2014).
  6. Moran, N. A., McCutcheon, J. P., Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165-190 (2008).
  7. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 407, 81-86 (2000).
  8. Nikoh, N., et al. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc. Natl. Acad. Sci. U. S. A. 111 (28), 10257-10262 (2014).
  9. Sloan, D. B., et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31 (4), 857-871 (2014).
  10. Xue, J., et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 15 (12), 521 (2014).
  11. Campbell, M. A., et al. Genome expansion via lineage splitting and genomereduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. U. S. A. 112 (33), 10192-10199 (2015).
  12. Wilson, A. C., et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol. Biol. 19, 249-258 (2010).
  13. Degnan, P. H., Ochman, H., Moran, N. A. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera. PLoS Genet. 7 (9), e1002252 (2011).
  14. Nakabachi, A., et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 314 (5797), 267 (2006).
  15. De Barro, P. J., Liu, S. S., Boykin, L. M., Dinsdale, A. B. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56, 1-19 (2011).
  16. Himler, A. G., et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science. 332 (6026), 254-256 (2011).
  17. Bing, X. L., Ruan, Y. M., Rao, Q., Wang, X. W., Liu, S. S. Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci. 20 (2), 194-206 (2013).
  18. Bing, X. L., Yang, J., Zchori-Fein, E., Wang, X. W., Liu, S. S. Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl. Environ. Microbiol. 79 (2), 569-575 (2013).
  19. Kliot, A., et al. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues. J. Vis. Exp. (84), e51030 (2014).
  20. Lee, P. Y., Costumbrado, J., Hsu, C., Kim, Y. H. Agarose gel electrophoresis for the separation of DNA fragments. J. Vis. Exp. (62), e3923 (2012).
  21. Rao, Q., et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics. 16 (1), 226 (2015).
  22. Thao, L. L., Baumann, P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl. Environ. Microbiol. 70 (6), 3401-3406 (2004).
  23. Zhu, D. T., et al. Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I. Insect Sci. 23 (4), 531-542 (2016).
  24. Gottlieb, Y., et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (HomopteraAleyrodidae). Appl. Environ. Microbiol. 72 (5), 3646-3652 (2006).
  25. Zhang, C. R., et al. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments. Sci. Rep. 5, 15898 (2015).
  26. Shan, H. W., et al. Temporal changes of symbiont density and host fitness after rifampicin treatment in a whitefly of the Bemisia tabaci species complex. Insect Sci. 23 (2), 200-214 (2016).
  27. Zchori-Fein, E., Brown, J. K. Diversity of prokaryotes asscociated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann. Entomol. Soc. Am. 95 (6), 711-718 (2002).
  28. Thao, M. L., Baumann, P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl. Environ. Microbiol. 70 (6), 3401-3406 (2004).
  29. Zchori-Fein, E., Perlman, S. J. Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 13 (7), 2009-2016 (2004).
  30. O’Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L., Robertson, H. M. 116S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. U. S. A. 89 (7), 2699-2702 (1992).
  31. Nirgianaki, A. Wolbachia infections of the whitefly Bemisia tabaci. Curr. Microbiol. 47 (2), 93-101 (2003).
  32. Everett, K. D., Thao, M. L., Horn, M., Dyszynski, G. E., Baumann, P. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Micr. 55, 1581-1587 (2005).
check_url/pt/55809?article_type=t

Play Video

Citar este artigo
Zhu, D., Wang, X., Ban, F., Zou, C., Liu, S., Wang, X. Methods for the Extraction of Endosymbionts from the Whitefly Bemisia tabaci. J. Vis. Exp. (124), e55809, doi:10.3791/55809 (2017).

View Video