Summary

Omprogrammering primære fostervand og membran celler til Pluripotency i Xeno-fri betingelser

Published: November 27, 2017
doi:

Summary

Denne protokol beskriver omprogrammering af primære fostervand væske og membran mesenkymale stamceller til induceret pluripotente stamceller ved hjælp af en ikke-integrere episomal tilgang i fuldt kemisk definerede betingelser. Procedurer for udvinding, kultur, omprogrammering og karakterisering af de resulterende inducerede pluripotente stamceller af strenge metoder er beskrevet.

Abstract

Autolog cellebaserede behandlinger fik et skridt tættere på virkeligheden med indførelsen af induceret pluripotente stamceller. Føtale stamceller, som fostervand og membran mesenkymale stamceller, repræsenterer en enestående type af udifferentierede celler med løftet i vævsmanipulering og for omprogrammering til iPSC for fremtidige pediatric interventioner og stamcelle bank. Protokollen præsenteres her beskriver en optimeret proceduren til ekstraktion og dyrkning af primære fostervand væske og membran mesenkymale stamceller og generere episomal induceret pluripotente stamceller fra disse celler som fuldt kemisk definerede kultur betingelser, der anvender humane rekombinante vitronectin og E8 medium. Karakterisering af de nye linjer ved at anvende strenge metoder – flowcytometri, Konfokal imaging, teratom dannelse og transcriptional profilering – er også beskrevet. De nyligt oprettede linjer express markører af embryonale stamceller-Oct3/4A, Nanog, Sox2, TRA-1-60, TRA-1-81, SSEA-4 – samtidig med at være negativ for SSEA-1 markør. Stamcellelinjer danner Teratomer i scid-beige mus i 6-8 uger og Teratomer indeholder væv repræsentativ for alle tre Kim lag. Transkriptionel profilering af linjerne ved at indsende globale udtryk microarray data til en bioinformatic pluripotency vurdering algoritmen anses for alle linjer pluripotente og derfor denne tilgang er et attraktivt alternativ til dyreforsøg. De nye iPSC linjer kan let anvendes downstream forsøg med optimering af differentiering og vævsmanipulering.

Introduction

Teknologien af induceret pluripotente stamceller (iPSC) bringer om potentielle celle udskiftning behandlingsformer, sygdom og udviklingsmæssige modellering, og narkotika og toksikologiske screening1,2,3. Udskiftning terapier kan konceptuelt opnås ved celle indsprøjtning, in vitro-opdelte væv (såsom hjerte patches) implantation eller guidede regenerering gennem vævsmanipulering. Fostervand (AFSC) og membran stamceller (AMSC) er en glimrende kilde til celler til disse interventioner enten direkte4,5,6,7 eller som en start celle population for omprogrammering i pluripotency8,9,10,11,12.

Tidlig tilgange bruges udefineret kultur systemer eller omprogrammering metoder, der kræver indebærer genomisk integration af konstruktioner9,10,11,12. En nyere undersøgelse ansat en xeno-frit medium, selv om en mindre definerede basalmembranen vedhæftet fil matrix (BMM) blev brugt til at generere iPSC fra fostervand væske epitelceller. Teratom dannelse analysen indgik ikke i undersøgelsen sammen med et væld af in vitro- og molekylære data. Fostervand væske epitelceller fandtes for at have en nogenlunde 8-fold højere omprogrammering effektivitet i forhold til neonatal fibroblaster13. I en anden undersøgelse fandtes mesenkymale stamceller fra fostervand også skal omprogrammeres til iPSC med en meget højere effektivitet12.

Pluripotente stamceller kan differentieres til væv repræsentant for alle 3 Kim lag og dermed har den bredeste potentiale. Pædiatriske patienter kunne drage fordel af den høst, omprogrammering, og vævsmanipulering af deres autolog fostervand væske stamceller prænatalt og fostervand membran stilk celler perinatal. Desuden kunne det forholdsvis lave niveau af differentiering af føtale stamceller (lavere end voksne stamceller14,15) teoretisk støtte i håndteringen af de observerede fastholdelse af epigenetiske bias fra kildecellerne i iPSC16.

Præsenterer her vi en protokol for omprogrammering fostervand og membran stamceller til pluripotency i kemisk definerede xeno-fri E8 medium rekombinante vitronectin17 (VTN) ved hjælp af episomal plasmider18. Den største fordel af fostervand væske og membran celler som en kilde til celler for omprogrammering ligger i deres tilgængelighed pre- og perinatal og dermed denne tilgang gavner hovedsagelig forskning i pediatric vævsmanipulering.

Protocol

Protokollen følger institutionelle retningslinjer fra den etiske komité for human forskning. Skriftlig samtykke fra patienten blev opnået for anvendelse af fostervand til forskning. Denne protokol følger institutionelle Animal Care og brug Udvalget af University of South Alabama politikker. 1. isolering og kultur af primære fostervand mesenkymale stamceller Plettering af fostervand væske celler Få mindst 2,5 mL fostervand…

Representative Results

Informeret skriftligt samtykke blev opnået fra patienter før høsten fostervand for genetiske testformål og afsætte en lille prøve af væsken for forskning. Ingen samtykke er påkrævet for brug af fostervand membranen i forskning som moderkagen repræsenterer medicinsk affald. Fostervand væske og membran stamceller viser typiske mesenchymale egenskaber, morfologisk deres celler er spindel-formet og fase-lyse. Ved omprogrammering, cellerne gennemgå mesenchymale til epitel (MET) ove…

Discussion

Den indledende fase af iPSC generation fra føtale stamceller indebærer udvinding af kildecellerne fra de føtale væv, deres kultur, ekspansion og indførelsen af de episomal omprogrammering plasmider. Denne fase efterfølges af en kultur omkring 14-18 dage før de første fuldt omprogrammeret kolonier kan udvides. Den sidste fase er modning af iPSC kloner. Den indledende ekstraktion af fostervand membran stamceller er opnået ved hjælp af en kombineret mekaniske og Enzymatisk nedbrydning af dyr. Vi fandt, at en inkub…

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af Fonds Medizinische Forschung på universitetet i Zürich, Forschungskredit af universitetet i Zürich, The SCIEX NMSCh under stipendier 10.216 og 12.176, den schweiziske samfund kardiologi, The Swiss National Science Fundamentet under Grant [320030-122273] og [310030-143992], 7. rammeprogram, liv ventil, Europa-Kommissionen under tilskud [242008], Olga Mayenfisch Foundation, EMDO Foundation, starttilskud 2012 af Zürich Universitetshospital og interne finansiering af Mitchell Cancer Institute.

Materials

Tumor Dissociation Kit, human Miltenyi Biotec 130-095-929 tissue dissociation system, reagent kit, includes tissue dissociation tubes and tissue dissociation enzymes
gentleMACS Dissociator Miltenyi Biotec 130-093-235 tissue dissociation system, dissociator
Thermo Scientific™ Shandon™ Disposable Scalpel No. 10, Sterile, Individually Wrapped, 5.75 (14.6cm) Thermo-Fisher 3120032
70 µm cell strainers Corning 10054-456
RPMI 1640 medium Thermo-Fisher 32404014 
rocking platform VWR 40000-300
50 ml centrifuge tubes Thermo-Fisher 339652
15 ml centrifuge tubes Thermo-Fisher 339650
EBM-2 basal medium Lonza CC-3156 basal medium for AFMC medium
FGF 2 Human (expressed in E. coli, non-glycosylated) Prospec Bio CYT-218 bFGF, supplement for AFMC medium
EGF Human, Pichia Prospec Bio CYT-332  EGF, supplement for AFMC medium
LR3 Insulin Like Growth Factor-1 Human Recombinant Prospec Bio CYT-022 IGF, supplement for AFMC medium
Fetal Bovine Serum, embryonic stem cell-qualified Thermo-Fisher 10439024 FBS
Antibiotic-Antimycotic (100X) Thermo-Fisher 15240062  for primary AFSC/AMSC, for routine AFSC/AMSC it should not be necessary, do not use in medium for transfected cells!
Accutase cell detachment solution StemCell Technologies 07920 cell detachment enzyme
CryoStor™ CS10 StemCell Technologies 07930 complete freezing medium
PBS, pH 7.4 Thermo-Fisher Scientific 10010023 
EndoFree Plasmid Maxi Kit (10) Qiagen 12362 for plasmid isolation
pEP4 E02S EN2K Addgene 20925 EN2K, reprogramming factors Oct4+Sox2, Nanog+Klf4
pEP4 E02S ET2K Addgene 20927 ET2K, reprogramming factors Oct4+Sox2, SV40LT+Klf4
pCEP4-M2L Addgene 20926 M2L, reprogramming factors c-Myc+LIN28
NanoDrop 2000c UV-Vis Spectrophotometer Thermo-Fisher ND-2000C spectrophotometer
Neon® Transfection System Thermo-Fisher MPK5000 transfection system, components:
Neon pipette – transfection pipette
Neon device – transfection device
Neon® Transfection System 10 µL Kit Thermo-Fisher MPK1025 consumables kit for the Neon Transfection System, it contains:
Neon tip – transfection tip
Neon tube – transfection tube
buffer R – resuspension buffer
buffer E – electrolytic buffer
Stemolecule™ Sodium Butyrate StemGent 04-0005 small molecule enhancer of reprogramming
TeSR-E8 StemCell Technologies 05940 E8 medium
Vitronectin XF™ StemCell Technologies 07180 VTN, stock concentration 250 µg/ml, used for coating at 1 µg/cm2 in vitronectin dilution (CellAdhere) buffer
CellAdhere™ Dilution Buffer StemCell Technologies 07183 vitronectin dilution buffer
UltraPure™ 0.5M EDTA, pH 8.0 Thermo-Fisher 15575020 dilute with PBS to 0.5 mM before use
EVOS® FL Imaging System Thermo-Fisher Scientific AMF4300 LCD imaging microscope system
CKX53 Inverted Microscope Olympus phase contrast cell culture microscope
Pierce™ 16% Formaldehyde (w/v), Methanol-free Thermo-Fisher 28908 dilute to 4% with PBS before use, diluted can be stored at 2-8 °C for 1 week
Perm Buffer III BD Biosciences 558050 permeabilization buffer, chill to -20 °C before use
Mouse IgG1, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 557782 isotype control for Oct3/4A, Nanog
Mouse IgG1, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 557783 isotype control for Sox2
Mouse anti-human Oct3/4 (Human Isoform A), Alexa Fluor® 488 BD Biosciences 561628
Mouse anti-human Nanog, Alexa Fluor® 488 BD Biosciences 560791
Mouse anti-human Sox-2, Alexa Fluor® 647 BD Biosciences 562139
Mouse IgGM, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 401617 isotype control for TRA-1-60
Mouse IgGM, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 401618 isotype control for TRA-1-81
Mouse anti-human TRA-1-60, Alexa Fluor® 488 BD Biosciences 330613
Mouse anti-human TRA-1-81, Alexa Fluor® 647 BD Biosciences 330705
Mouse IgG1, κ Isotype Control, Alexa Fluor® 488 BD Biosciences 400129 isotype control for SSEA-1
Mouse IgG3, κ Isotype Control, Alexa Fluor® 647 BD Biosciences 401321 isotype control for SSEA-4
Mouse anti-human SSEA-1, Alexa Fluor® 488 BD Biosciences 323010
Mouse anti-human SSEA-4, Alexa Fluor® 647 BD Biosciences 330407
Affinipure F(ab')2 Fragment Goat Anti-Mouse IgG+IgM, Alexa Fluor® 488 Jackson Immunoresearch 115-606-068 use at a dilution of 1:600 or further optimize
Affinipure F(ab')2 Fragment Goat Anti-Mouse IgG+IgM, Alexa Fluor® 647 Jackson Immunoresearch 115-546-068 use at a dilution of 1:600 or further optimize
DAPI Thermo-Fisher Scientific D21490 stock solution 10 mM, further dilute to 1:12.000 for a working solution
Corning® Matrigel® Growth Factor Reduced, Phenol Red-Free Corning 356231 basement membrane matrix (BMM)
scid-beige mice, female Taconic CBSCBG-F
RNeasy Plus Mini Kit (50) Qiagen 74134 RNA isolation kit
T-25 flasks, tissue culture-treated Thermo-Fisher 156367
T-75 flasks, tissue culture-treated Thermo-Fisher 156499
Nunc™ tissue-culture dish Thermo-Fisher 12-567-650  10 cm tissue culture dish
6-well plates, tissue-culture treated Thermo-Fisher 140675
Neubauer counting chamber (hemacytometer) VWR 15170-173
Mr. Frosty™ Freezing Container Thermo-Fisher 5100-0001  freezing container
FACS tubes, Round Bottom Polystyrene Test Tube, 5ml Corning 352058 5 ml polystyrene tubes
Eppendorf tubes, 1.5 ml Thermo-Fisher 05-402-96 1.5 ml microcentrifuge tubes
PCR tubes, 200 µl Thermo-Fisher 14-222-262
pipette tips, 100 to 1250 µl Thermo-Fisher 02-707-407 narrow-bore 1 mL tips
pipette tips, 5 to 300 µl Thermo-Fisher 02-707-410
pipette tips, 0.1 to 10 µl Thermo-Fisher 02-707-437
wide-bore pipette tips, 1000 µl VWR 89049-166 wide-bore 1 mL tips
glass Pasteur pipettes Thermo-Fisher 13-678-20A
ethanol, 200 proof Thermo-Fisher 04-355-451
vortex mixer VWR 10153-842
chambered coverglass, 8-well, 1.5mm borosilicate glass Thermo-Fisher 155409 glass-bottom confocal-grade cultureware
22G needles VWR 82002-366
insulin syringes Thermo-Fisher 22-253-260
Formalin solution, neutral buffered, 10% Sigma-Aldrich HT501128-4L fixation of explanted teratomas
Illumina HT-12 v4 Expression BeachChip Illumina BD-103-0204 expression microarray, supported by PluriTest, discontinued by manufacturer
PrimeView Human Genome U219 Array Plate Thermo-Fisher 901605 expression microarray (formerly Affymetrix brand), soon to be supported by PluriTest
GeneChip™ Human Genome U133 Plus 2.0 Array Thermo-Fisher 902482 expression microarray (formerly Affymetrix brand), supported by CellNet, soon to be supported by PluriTest
PluriTest® Coriell Institute www.pluritest.org, free service for bioinformatic assessment of pluripotency, accepts microarray data – *.idat files from HT-12 v4 platform, soon to support U133, U219 microarray and RNA sequencing data
CellNet Johns Hopkins University cellnet.hms.harvard.edu, free service for bioinformatic identification of cell type, including plutipotent stem cells, based on U133 microarray data – *.cel files, soon to support RNA sequencing data

Referências

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  2. Yu, J., et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science. 318 (5858), 1917-1920 (2007).
  3. Trounson, A., DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17 (3), 194-200 (2016).
  4. Schmidt, D., et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 116 (11 Suppl), I64-I70 (2007).
  5. Weber, B., Zeisberger, S. M., Hoerstrup, S. P. Prenatally harvested cells for cardiovascular tissue engineering: Fabrication of autologous implants prior to birth. Placenta. 32, S316-S319 (2011).
  6. Weber, B., et al. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials. 33 (16), 4031-4043 (2012).
  7. Kehl, D., Weber, B., Hoerstrup, S. P. Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc. Pathol. 25 (4), 300-305 (2016).
  8. Slamecka, J., et al. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle. 15 (2), 234-249 (2016).
  9. Jiang, G., et al. Human Transgene-Free Amniotic-Fluid-Derived Induced Pluripotent Stem Cells for Autologous Cell Therapy. Stem Cells Dev. 23 (21), 2613-2625 (2014).
  10. Pipino, C., et al. Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking. Cell. Reprogram. 16 (5), 331-344 (2014).
  11. Cai, J., et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol. Chem. 285 (15), 11227-11234 (2010).
  12. Ge, X., et al. Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells Dev. 21 (15), 2798-2808 (2012).
  13. Drozd, A. M., Walczak, M. P., Piaskowski, S., Stoczynska-Fidelus, E., Rieske, P., Grzela, D. P. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res. Ther. 6 (1), (2015).
  14. Kang, N. -. H., et al. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther. 19 (8), 517-522 (2012).
  15. Moschidou, D., et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol. Ther. 20 (10), 1953-1967 (2012).
  16. Kim, K., et al. Epigenetic memory in induced pluripotent stem cells. Nature. 467 (7313), 285-290 (2010).
  17. Chen, G., et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods. 8 (5), 424-429 (2011).
  18. Yu, J., et al. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 324 (5928), 797-801 (2009).
  19. Martí, M., et al. Characterization of pluripotent stem cells. Nat. Protoc. 8 (2), 223-253 (2013).
  20. Chan, E. M., et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27 (11), 1033-1037 (2009).
  21. Adewumi, O., et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25 (7), 803-816 (2007).
  22. Müller, F. -. J., et al. A bioinformatic assay for pluripotency in human cells. Nature Methods. 8 (4), 315-317 (2011).
  23. Cahan, P., Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q., Collins, J. J. CellNet: Network Biology Applied to Stem Cell Engineering. Cell. 158 (4), 903-915 (2014).
  24. Schopperle, W. M., DeWolf, W. C. The TRA-1-60 and TRA-1-81 Human Pluripotent Stem Cell Markers Are Expressed on Podocalyxin in Embryonal Carcinoma. STEM CELLS. 25 (3), 723-730 (2007).
  25. Ohnishi, K., et al. Premature Termination of Reprogramming In Vivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell. 156 (4), 663-677 (2014).
  26. Schlaeger, T. M., et al. A comparison of non-integrating reprogramming methods. Nature Biotechnology. 33 (1), 58-63 (2014).
  27. Müller, F. -. J., Goldmann, J., Löser, P., Loring, J. F. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell. 6 (5), 412-414 (2010).
  28. Beers, J., et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7 (11), 2029-2040 (2012).
check_url/pt/56003?article_type=t

Play Video

Citar este artigo
Slamecka, J., Laurini, J., Shirley, T., Hoerstrup, S. P., Weber, B., Owen, L., McClellan, S. Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions. J. Vis. Exp. (129), e56003, doi:10.3791/56003 (2017).

View Video