Summary

反复臭氧暴露对小鼠慢性阻塞性肺疾病模型的产生

Published: August 25, 2017
doi:

Summary

这项研究描述了一个新的慢性阻塞性肺疾病 (COPD) 动物模型的成功生成, 反复暴露小鼠到高浓度的臭氧。

Abstract

慢性阻塞性肺疾病 (COPD) 的特点是持续气流限制和肺实质破坏。它在老龄人口中的发病率很高。目前常规的 COPD 治疗主要集中在症状修饰药物;因此, 迫切需要开发新的治疗方法。合格的慢性阻塞性肺病动物模型有助于确定基本的机制, 并可用于新的药物筛选。目前的 copd 模型, 如脂多糖 (LPS) 或猪胰弹性蛋白酶 (PPE) 诱导肺气肿模型, 产生 copd 样病变的肺部和呼吸道, 但没有其他类似的发病机制的人 copd。香烟烟雾 (CS) 诱导模型仍然是最流行的之一, 因为它不仅模拟 copd 样病变的呼吸系统, 但它也基于其中一个主要的危险物质, 导致 copd 的人。然而, CS 诱导模型的耗时和 labor-intensive 的方面极大地限制了它在新药筛选中的应用。在这项研究中, 我们成功地产生了一个新的 COPD 模型, 暴露小鼠到高水平的臭氧。该模型显示如下: 1) 减少了强迫呼气体积 25, 50, 75/强迫肺活量 (FEV25/FVC, FEV50/FVC, 和 FEV75/FVC), 表明肺功能恶化;2) 肺肺泡肿大, 肺实质破坏;3) 减少疲劳时间和距离;和 4) 炎症增加。综合起来, 这些数据表明, 臭氧暴露模型是一种与人类相似的可靠动物模型, 因为臭氧过度曝光是 COPD 的病因之一。此外, 根据我们以前的工作, 它只花了 6-8 周, 创建一个 OE 模型, 而它需要 3-12 月, 以诱导卷烟烟雾模型, 表明 oe 模型可能是一个很好的选择 COPD 的研究。

Introduction

据估计, COPD, 包括肺气肿和慢性支气管炎, 可能是世界上的第三个主要死因在 2020年1,2。在未来40年3中, 在40岁以上的人口中, COPD 的潜在发病率估计为12.7% 男性, 8.3% 为女性。目前尚无药物可逆转 COPD 患者的渐进性恶化4。可靠的 COPD 动物模型不仅要求对疾病的病理过程进行模拟, 而且需要较短的周期。目前的 COPD 模型, 包括 LPS 或 PPE 诱发的模型, 可以诱发肺气肿样症状5,6。一个单一的管理或一个星期的挑战, LPS 或 PPE 的小鼠或大鼠结果在支气管肺泡灌洗液 (BALF) 的显着中性, 增加炎调解人 (例如, TNF-α和 IL-1β) 在 BALF 或血清, 产生肺实质破坏-扩大空气空间, 并限制气流5,6,7,8,9,10。然而, LPS 或 PPE 不是人类慢性阻塞性肺病的原因, 因此不模仿病理过程11。CS 诱导模型产生持续气流限制, 肺实质破坏, 并减少功能锻炼能力。但是, 传统的 CS 协议至少需要3月才能生成 COPD 模型12,13,14,15。因此, 重要的是要产生一个新的, 更有效的动物模型, 满足这两个要求。

最近, 除了吸烟, 空气污染和职业暴露已成为更常见的原因 COPD16,17,18。臭氧作为主要污染物之一 (虽然不是空气污染的主要成分), 可以直接与呼吸道发生反应, 损害儿童和青年成人的肺组织19,20,21 ,22,23,24,25。臭氧, 以及其他刺激, 包括 LPS, PPE, 和 CS, 参与了严重的生化途径的肺氧化应激和 DNA 损伤, 并与启动和促进 COPD26,27。另一个因素是, 一些 COPD 患者的症状在暴露于臭氧后恶化, 表明臭氧会扰乱肺部功能18,28,29。因此, 我们产生了一个新的 COPD 模型, 反复暴露小鼠到高浓度的臭氧7周;这导致气流缺陷和肺部实质损伤类似于以前的调查30,31,32。我们在本研究中推广了对雌性小鼠的 OE 协议, 并成功地再现了我们以前研究的雄性小鼠的肺气肿30,31,32。由于 copd 死亡率在男性减少, 但在许多国家的妇女增加了33, 需要对女性 copd 模型进行研究, 以探讨慢性阻塞性肺病患者的发病机制和治疗方法。OE 模型对所有性别的适用性进一步支持它作为 COPD 模型的使用。

Protocol

注意: OE 模型已经生成并用于以前报告的研究 30 、 31 、 32 。所有动物实验均经上海交通大学机构动物护理与使用委员会 (IACUC) 批准. 1. 鼠标 在受控温度 (20 和 #176; c) 和湿度 (40-60%) 的动物设施的单个通风笼中, 无病原体、7至9周老的雌性 balb/c/c 小鼠。提供12和 #160; h 光和 12 #160; 设备中的暗循…

Representative Results

每个组的3D µCT 图像的示例显示在图 1a中。臭氧暴露的小鼠的总肺容积明显较大 (图 1a 和 b) 和 LAA% (图 1c) 比 air-exposed 控制小鼠。六周的臭氧暴露后, 肺容积和 LAA% 保持升高31,32。肺容积和 LAA% 的增加代表肺气肿的表型。肺肺…

Discussion

在这项研究中, 我们提出了一个可靠的方法来生成一个新的 COPD 模型。与其他模型 (LPS 或 PPE 模型) 相比, 此 OE 模型重述 COPD 患者的病理过程。由于香烟烟雾是导致人患 copd 的主要危险物质40, CS 模型仍然是最受欢迎的 copd 模型41,42。然而, CS 模型需要 3-到12月的 r-和 #38;D 期新药。与 CS 模型相比, 目前的 OE 模型将生成周期缩短为6-…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者希望对 Mr. 波 (上海市公共卫生临床中心) 在本议定书中的µCT 评估提供技术援助表示感谢。

Materials

BALB/c mice Slac Laboratory Animal,Shanghai, China N/A 7-to-9-week-old female BALB/c mice were used in this study.
Individual ventilated cages Suhang, Shanghai, China Model Number: MU64S7 The cages were used for housing mice in the animal facility.
Sealing perspex-box Suhang, Shanghai, China N/A The box was used  to contain the ozone generator. Mice were exposed to ozone within the box.
Electric generator Sander Ozoniser, Uetze-Eltze, Germany Model 500  The device was used for generating ozone.
Ozone probe ATi Technologies, Ashton-U-Lyne, Greater Manchester, UK Ozone 300 The device was used for monitoring and controlling the generation of ozone.
Pelltobarbitalum natricum Sigma, St. Louis, MO, USA P3761 Mice were anesthetized by intraperitoneal injection of pelltobarbitalum natricum.
Micro-Computed Tomography GE Healthcare, London, ON, Canada RS0800639-0075 This device was used for acquiring images of the lung.
Micro-view 2.01 ABA software GE Healthcare, London, ON, Canada Micro-view 2.01  This device was used for reconstruct the lung and analyze volume, LAA of the lung.
Treadmill machine  Duanshi, Hangzhou, Zhejiang, China DSPT-208 This machine was usd for fatigue test.
Body plethysmograph eSpira™ Forced Manoeuvres System, EMMS, Edinburgh, UK Forced Manoeuvres System This device was used to test spirometry pulmonary function.
Ventilator eSpira™ Forced Manoeuvres System, EMMS, Edinburgh, UK Forced Manoeuvres System This device was used to test spirometry pulmonary function.
Slide spinner centrifuge Denville Scientific, Holliston, MA, USA C1183  It was used to spin BALF cells onto slides.
Wright Staining Hanhong, Shanghai, China RE04000054  It was used to staining macrophages, neutrophils in the suspended BALF.
Hemocytometer Hausser Scientific, Horsham, PA, USA 4000 It was used to count cells.
IL-1β Abcam, Cambridge, MA, USA ab100704 They were used to test the respective factors in serum.
IL-10 Abcam, Cambridge, MA, USA ab46103 They were used to test the respective factors in serum.
TNF-α Abcam, Cambridge, MA, USA ab100747 They were used to test the respective factors in serum.
Paraformaldehyde  Sigma, St. Louis, MO, USA P6148 The lung was inflated by 4% paraformaldehyde.
Paraffin Hualing, Shanghai, China 56# It was used to embed the lung.
Rotary Microtome Leica, Wetzlar,  Hesse, Germany RM2255 It was used for sectioning the lung.
Hgaematoxylin and Eosin (H&E) staining solution Solarbio, Beijing, China G1120 H&E staining was done for morphometric analysis.
Upright bright field microscope Olympus, Center Valley, PA, USA CX41 It was used to image the H&E staining slides.
Adobe Photoshop 12 Adobe, San Jose, CA, USA Adobe Photoshop 12 It was used to count the number of alveoli on the H&E stained images.
GraphPad prism 5 Graphpad Software Inc., San Diego, CA GraphPad prism 5 It was used for data analysis and production of figures.

Referências

  1. Lozano, R., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380, 2095-2128 (2012).
  2. Chapman, K. R., et al. Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 27, 188-207 (2006).
  3. Afonso, A. S., Verhamme, K. M., Sturkenboom, M. C., Brusselle, G. G. COPD in the general population: prevalence, incidence and survival. Respir Med. 105, 1872-1884 (2011).
  4. Rabe, K. F., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 176, 532-555 (2007).
  5. Ogata-Suetsugu, S., et al. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. Biochem Biophys Res Communi. 484, 422-428 (2017).
  6. Oliveira, M. V., et al. Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase. Front Physiol. 7, 457 (2016).
  7. Vernooy, J. H., Dentener, M. A., van Suylen, R. J., Buurman, W. A., Wouters, E. F. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol. 26, 152-159 (2002).
  8. Birrell, M. A., et al. Role of matrix metalloproteinases in the inflammatory response in human airway cell-based assays and in rodent models of airway disease. J Pharm Exp Ther. 318, 741-750 (2006).
  9. Gamze, K., et al. Effect of bosentan on the production of proinflammatory cytokines in a rat model of emphysema. Exp Mol Med. 39, 614-620 (2007).
  10. Vanoirbeek, J. A., et al. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol. 42, 96-104 (2010).
  11. Wright, J. L., Cosio, M., Churg, A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 295, 1-15 (2008).
  12. Huh, J. W., et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 301, 255-266 (2011).
  13. Schweitzer, K. S., et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 183, 215-225 (2011).
  14. Guan, X. J., et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 114, 323-335 (2013).
  15. Gu, W., et al. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 5, 8733 (2015).
  16. Cordasco, E. M., VanOrdstrand, H. S. Air pollution and COPD. Postgrad Med. 62, 124-127 (1977).
  17. Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology. 21, 237-244 (2016).
  18. DeVries, R., Kriebel, D., Sama, S. Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta-Analysis. COPD. 14 (1), 113-121 (2016).
  19. Penha, P. D., Amaral, L., Werthamer, S. Ozone air pollutants and lung damage. IMS Ind Med Surg. 41, 17-20 (1972).
  20. Stern, B. R., et al. Air pollution and childhood respiratory health: exposure to sulfate and ozone in 10 Canadian rural communities. Environ Res. 66, 125-142 (1994).
  21. Tager, I. B., et al. Chronic exposure to ambient ozone and lung function in young adults. Epidemiology. 16, 751-759 (2005).
  22. Romieu, I., Castro-Giner, F., Kunzli, N., Sunyer, J. Air pollution, oxidative stress and dietary supplementation: a review. Eur Respir J. 31, 179-197 (2008).
  23. Hemming, J. M., et al. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). Bioquímica. 54, 5185-5197 (2015).
  24. Chu, H., et al. Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles. Sci Total Environ. 573, 303-312 (2016).
  25. Jin, M., et al. MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles. Environ Toxicol Pharmacol. 46, 246-254 (2016).
  26. Brusselle, G. G., Joos, G. F., Bracke, K. R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 378, 1015-1026 (2011).
  27. Valavanidis, A., Vlachogianni, T., Fiotakis, K., Loridas, S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 10, 3886-3907 (2013).
  28. Medina-Ramon, M., Zanobetti, A., Schwartz, J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol. 163, 579-588 (2006).
  29. Lee, I. M., Tsai, S. S., Chang, C. C., Ho, C. K., Yang, C. Y. Air pollution and hospital admissions for chronic obstructive pulmonary disease in a tropical city: Kaohsiung, Taiwan. Inha Toxicol. 19, 393-398 (2007).
  30. Triantaphyllopoulos, K., et al. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol. 300, 691-700 (2011).
  31. Li, F., et al. Effects of N-acetylcysteine in ozone-induced chronic obstructive pulmonary disease model. PLoS ONE. 8, e80782 (2013).
  32. Li, F., et al. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice. Am J Respir Cell Mol Biol. 55, 72-81 (2016).
  33. Rycroft, C. E., Heyes, A., Lanza, L., Becker, K. Epidemiology of chronic obstructive pulmonary disease: a literature review. Int J Chron Obstruct Pulmon Dis. 7, 457-494 (2012).
  34. Washko, G. R., et al. Airway wall attenuation: a biomarker of airway disease in subjects with COPD. J Appl Physiol. 107, 185-191 (2009).
  35. Yamashiro, T., et al. Quantitative assessment of bronchial wall attenuation with thin-section CT: An indicator of airflow limitation in chronic obstructive pulmonary disease. AJR Am J Roentgenol. 195, 363-369 (2010).
  36. Tang, X., et al. Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS ONE. 6, e24224 (2011).
  37. Schmidt, G. A., et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am J Respir Crit Care Med. 195, 115-119 (2017).
  38. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 166, 111-117 (2002).
  39. Shigemura, N., et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant. 6, 2592-2600 (2006).
  40. Bchir, S., et al. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med. , 1-12 (2016).
  41. Fricker, M., Deane, A., Hansbro, P. M. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 9, 629-645 (2014).
  42. Perez-Rial, S., Giron-Martinez, A., Peces-Barba, G. Animal models of chronic obstructive pulmonary disease. Arch Bronconeumol. 51, 121-127 (2015).
  43. Antunes, M. A., et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 15, 118 (2014).
  44. Celli, B. R., MacNee, W., Force, A. E. T. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 23, 932-946 (2004).
  45. U.S. Preventive Services Task Force. Screening for chronic obstructive pulmonary disease using spirometry: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 148, 529-534 (2008).
  46. Ward, R. E., et al. Design considerations of CareWindows, a Windows 3.0-based graphical front end to a Medical Information Management System using a pass-through-requester architecture. Proc Annu Symp Comput Appl Med Care. , 564-568 (1991).
check_url/pt/56095?article_type=t&slug=generation-chronic-obstructive-pulmonary-disease-model-mice-repeated

Play Video

Citar este artigo
Sun, Z., Li, F., Zhou, X., Wang, W. Generation of a Chronic Obstructive Pulmonary Disease Model in Mice by Repeated Ozone Exposure. J. Vis. Exp. (126), e56095, doi:10.3791/56095 (2017).

View Video