Summary

Sintesi di nanocristalli di Upconversion drogato con lantanidi Core-shell per applicazioni cellulari

Published: November 10, 2017
doi:

Summary

Un protocollo è presentato per la sintesi di nanocristalli core-shell drogato con lantanidi upconversion (UCNs) e le loro applicazioni cellulare per regolazione della proteina canale su illuminazione a luce vicina all’infrarosso (NIR).

Abstract

Drogato con lantanidi upconversion nanocristalli (UCNs) hanno attirato molta attenzione negli ultimi anni sulla loro proprietà ottiche promettente e controllabile, che favoriscono l’assorbimento della luce di vicino infrarosso (NIR) e poterla convertire successivamente in base multiplexing delle emissioni che si estendono su una vasta gamma di regioni dal UV al visibile al NIR. Questo articolo presenta dettagliate procedure sperimentali per la sintesi ad alta temperatura co-precipitazione di core-shell UCNs che incorporano gli ioni lantanidi differenti in nanocristalli per la conversione efficiente di eccitazione di deep tissue penetrabile NIR (808 Nm) in una forte emissione blu a 480 nm. Controllando la modificazione superficiale con polimero biocompatibile (acido poliacrilico, PAA), il preparato come UCNs acquisisce grande solubilità in soluzioni tampone. I nanocristalli idrofili sono ulteriormente funzionalizzati con ligandi specifici (dibenzyl cyclooctyne, DBCO) per la localizzazione sulla membrana cellulare. Al momento di luce NIR (808 nm) irradiazione, l’emissione di upconverted blu può efficacemente attivare la proteina canale luce-gated sulla membrana cellulare e specificamente regolare l’afflusso di cationi (ad esempio, Ca2 +) nel citoplasma. Questo protocollo fornisce una metodologia fattibile per la sintesi di core-shell drogato con lantanidi UCNs e successive modificazione superficiale biocompatibile per ulteriori applicazioni cellulari.

Introduction

Negli ultimi anni, drogato con lantanidi upconversion nanocristalli (UCNs) sono stati ampiamente utilizzati come alternativa ai coloranti organici convenzionali e punti quantici in applicazioni biomediche, che sono principalmente basate sul loro proprietà ottiche e chimiche eccezionali, tra cui ottima biocompatibilità, elevata resistenza al photobleaching e larghezza di banda stretta emissione1,2,3. Ancora più importante, possono servire come un promettente nanotransducer con tessuto eccellente penetrazione profondità in vivo per convertire vicino infrarosso (NIR) di eccitazione in una vasta gamma delle emissioni da UV, visibile e le regioni NIR attraverso un multi-fotone upconversion processo4,5. Queste proprietà uniche rendono drogato con lantanidi UCNs servire come un vettore particolarmente promettente per rilevamento biologico, imaging biomedico e malattie teranostica6,7,8.

Le componenti generali di UCNs si basano principalmente sugli ioni lantanidi drogati in matrice dell’ospite isolanti contenenti un sensibilizzante (ad es., Yb3 +, Nd3 +) e un attivatore (ad es., Tm3 +, Er3 +, Ho 3 +) all’interno del cristallo in modo omogeneo9. L’emissione ottica diversa da nanocristalli è attribuita alla transizione elettronica localizzata all’interno gli orbitalif 4 dei droganti lantanidi a causa della loro scala-come organizzato energia livello10. Pertanto, è fondamentale per controllare con precisione le dimensioni e la morfologia delle UCNs sintetizzato con droganti multicomponente lantanidi. Dalla destra, alcuni metodi promettenti sono state ben stabilite per la preparazione di UCNs drogato con lantanidi, tra cui decomposizione termica, ad alta temperatura co-precipitazione, sintesi idrotermale, elaborazione di sol-gel, ecc.11 , 12 , 13 tra questi approcci, il metodo ad alta temperatura co-precipitazione è una delle strategie più popolare e conveniente per UCNs sintesi, che può essere controllato rigorosamente per preparare desiderata qualità nanocristalli con forma regolare e distribuzione delle dimensioni in un relativamente breve tempo di reazione e di basso costo14. Tuttavia, la maggior parte delle nanostrutture sintetizzati da questo metodo sono limitati principalmente con ligandi idrofobici come acido oleico e oleilammina, che in genere ostacolano la loro ulteriore bioapplication a causa della limitata solubilità ligando idrofobico in soluzione acquosa 15. di conseguenza, è necessario eseguire tecniche di modificazione superficiale adatto per preparare UCNs biocompatibile in applicazioni biologiche in vitro ed in vivo.

Qui, presentiamo la dettagliata procedura sperimentale per la sintesi di nanostrutture UCNs core-shell attraverso il metodo ad alta temperatura co-precipitazione e una tecnica di modificazione fattibile per funzionalizzare polimero biocompatibile sulla superficie UCNs per Ulteriori applicazioni cellulari. Questo nanoplatform UCNs incorpora tre ioni lantanidi (Yb3 +, Nd3 +e Tm3 +) in nanocristalli di acquisire forte emissione blu (~ 480 nm) al momento di eccitazione luce NIR a 808 nm, che ha una maggiore profondità di penetrazione in tessuto vivente. È ben noto che Nd3 +-drogati UCNs visualizzare gli effetti di assorbimento e surriscaldamento acqua ridotta a icona questa finestra spettrale (808 nm) rispetto ai convenzionali UCNs su 980 nm irradiazione16,17, 18. Inoltre, per utilizzare le UCNs nei sistemi biologici, i ligandi idrofobici (acido oleico) sulla superficie delle UCNs in primo luogo vengono rimossi tramite sonicazione in soluzione acida19. Quindi le UCNs privo di ligando vengono ulteriormente modificati con un polimero biocompatibile (acido poliacrilico, PAA) di acquisire grande solubilità in soluzioni acquose20. Inoltre, come un proof-of-concept in applicazioni cellulari, le UCNs idrofili sono ulteriormente funzionalizzati con ligandi molecolare (dibenzyl cyclooctyne, DBCO) per la localizzazione specifica sul N3-etichetta della membrana cellulare. Al momento di luce NIR (808 nm) irradiazione, l’emissione di upconverted blu a 480 nm può efficacemente attivare una proteina canale luce-gated, channelrhodopsin-2 (ChR2), sulla cella la superficie e così facilitare l’afflusso di cationi (ad esempio, agli ioni di Ca2 + ) attraverso la membrana delle cellule viventi.

Questo video protocollo fornisce una metodologia fattibile per drogati lantanidi UCNs sintesi, modificazione superficiale biocompatibile e UCNs bioapplication in cellule viventi. Eventuali differenze nelle tecniche di sintesi e reagenti chimici utilizzati in nanocristallo crescita influenzerà gli spettri di luminescenza (UCL) dimensione upconversion, morfologia e distribuzione delle nanostrutture di UCNs finale utilizzata negli esperimenti di cella. Questo protocollo dettagliato dei video è disposta ad aiutare nuovi ricercatori in questo campo per migliorare la riproducibilità delle UCNs con il metodo ad alta temperatura co-precipitazione ed evitare gli errori più comuni in UCNs biocompatibile modificazione superficiale per ulteriori applicazioni cellulari.

Protocol

Attenzione: si prega di consultare tutte le schede di dati di sicurezza (MSDS) prima dell’uso. Si prega di utilizzare tutte le pratiche di sicurezza appropriate quando si esegue la sintesi di UCNs ad alta temperatura (~ 290 ° C), compreso l’uso di controlli tecnici (cappa) e dispositivi di protezione individuale (ad es., occhiali protettivi, guanti, camice da laboratorio, lunghezza pantaloni e scarpe chiuse). 1. sintesi di Sorbetto_limone 4: Yb/Tm/Nd (30/0.5/1%) @NaYF <sub…

Representative Results

Il processo di sintesi schematica di core-shell drogato con lantanidi UCNs sono mostrati nella Figura 1 e Figura 2. La microscopia elettronica a trasmissione (TEM) e la trasmissione ad alta risoluzione (HRTEM) di microscopia immagini di nanostrutture UCNs core e core-shell sono stati raccolti rispettivamente (Figura 1). Il ligando-libero UCNs sono preparati rimuovendo l’acido oleico idrofoba sulla su…

Discussion

Questo articolo presenta un metodo per la sintesi di nanocristalli core-shell drogato con lantanidi upconversion (UCNs) e la loro modificazione superficiale con molecole funzionali per applicazioni cellulari. Questo nanomateriale romanzo possiede eccellenti proprietà ottiche, che possono emettere UV e luce visibile eccitazione luce NIR attraverso un processo Multi-photon upconversion. In questo protocollo, il core-shell UCNs nanostrutture (Sorbetto_limone4: Yb/Tm/Nd (30/0.5/1%)@NaYF4: Nd (20 %)) so…

Declarações

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato parzialmente supportato da NTU-AIT-MUV NAM/16001, RG110/16 (S), (RG 11/13) e (RG 35/15) assegnato a Nanyang Technological University, Singapore e National Natural Science Foundation di Cina (NSFC) (No. 51628201).

Materials

1-Octadecene Sigma Aldrich O806 Technical grade
oleic acid Sigma Aldrich 364525 Technical grade
Methanol Fisher Scientific A412 Technical grade
Ethanol Fisher Scientific A405 Technical grade
Acetone Fisher Scientific A18 Technical grade
Hexane Sigma Aldrich H292 Technical grade
Thulium (III) acetate hydrate (Tm(CH3CO2)3) Sigma Aldrich 367702 99.9% trace metals basis
Neodymium (III) acetate hydrate (Nd(CH3CO2)3) Sigma Aldrich 325805 99.9% trace metals basis
Ytterbium (III) acetate hydrate (Yb(CH3CO2)3) Sigma Aldrich 326011 99.9% trace metals basis
Yttrium(III) acetate hydrate (Y(CH3CO2)3) Sigma Aldrich 326046 99.9% trace metals basis
Sodium hydroxide (NaOH) Sigma Aldrich S5881 reagent grade
Ammonium fluoride (NH4F) Sigma Aldrich 338869 ACS reagent
Hydrogen chloride (HCl) Fisher Scientific A144 reagent grade
polyacrylic acid (PAA) Sigma Aldrich 323667 average Mw 1800
1-Hydroxybenzotriazole hydrate (HOBT) Sigma Aldrich 54802 ACS reagent
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) Sigma Aldrich E7750 commercial grade
Dibenzocyclooctyne-amine (DBCO-NH2) Sigma Aldrich 761540 ACS reagent
N,N-Diisopropylethylamine (DIPEA) Sigma Aldrich D125806 ACS reagent
Dimethyl sulfoxide (DMSO) Fisher Scientific BP231 Technical grade
HEK293 cell line ATCC CRL-1573 human embryonic kidney
Fetal Bovine Serum (FBS) Sigma Aldrich F1051 ACS reagent
Penicillin-Streptomycin Thermo Fisher 15140122 10,000 U/mL
plasmid (pCAGGS-ChR2-Venus) Addgene 15753 Plasmid sent as bacteria in agar stab
Dulbecco's Modified Eagle Medium (DMEM) Thermo Fisher 11965092 High glucose
opti-Modified Eagle Medium (MEM) Thermo Fisher 51985034 Reduced Serum Media
Lipofectamine 3000 Transfection Reagent Thermo Fisher L3000015 Lipid-Based Transfection
N-Azidoacetylmannosamine, Acetylated (Ac4ManNAz) Sigma Aldrich A7605 ACS reagent
Trypsin-EDTA (0.25%) Thermo Fisher 25200056 Phenol red
Rhod-3 AM Calcium Imaging Kit Thermo Fisher R10145 Fluorescence dye
5-carboxytetramethylrhodamine-azide (Rhod-N3) Sigma Aldrich 760757 Azide-fluor 545
Confical dish ibidi GmbH 81158 Glass Bottom, 35 mm
50 ml conical centrifuge tubes Greiner Bio-One 227261 Polypropylene
15 ml conical centrifuge tubes Greiner Bio-One 188271 Polypropylene
1.5 ml conical microcentrifuge tubes Greiner Bio-One 616201 Polypropylene
Phenylmethyl silicone oil Clearco Products 63148-52-7 Less than 320 degrees Celsius
Glass thermometer GH Zeal L0111/10 From -10 to 360 degrees Celsius
12-well plate Sigma Aldrich Z707775 Polystyrene

Referências

  1. Wang, F., et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater. 10 (12), 968-973 (2011).
  2. Liu, Y., et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature. 543 (7644), 229-233 (2017).
  3. Fan, W., Bu, W., Shi, J. On The Latest Three-Stage Development of Nanomedicines based on Upconversion Nanoparticles. Adv Mater. 28 (24), 3987-4011 (2016).
  4. Zhu, X., et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun. 7, 10437-10446 (2016).
  5. Li, W., Wang, J., Ren, J., Qu, X. Near-infrared upconversion controls photocaged cell adhesion. J Am Chem Soc. 136 (6), 2248-2251 (2014).
  6. Min, Y., Li, J., Liu, F., Yeow, E. K., Xing, B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed. 53 (4), 1012-1016 (2014).
  7. Yang, D., Ma, P., Hou, Z., Cheng, Z., Li, C., Lin, J. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 44 (6), 1416-1448 (2015).
  8. Wang, C., Cheng, L., Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 3 (5), 317-330 (2013).
  9. Li, L. L., et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed. 51 (25), 6121-6125 (2012).
  10. Wang, J., Ming, T., Jin, Z., Wang, J., Sun, L. D., Yan, C. H. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%. Nat Commun. 5, 5669-5678 (2014).
  11. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S., Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics. 6 (8), 560-564 (2012).
  12. Liu, Y., Tu, D., Zhu, H., Li, R., Luo, W., Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu(3+) in lanthanides doped multifunctional NaGdF(4) nanocrystals. Adv Mater. 22 (30), 3266-3271 (2010).
  13. Min, Y., Li, J., Liu, F., Padmanabhan, P., Yeow, E. K., Xing, B. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials. Nanomaterials. 4 (1), 129-154 (2014).
  14. Li, X., Zhang, F., Zhao, D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 44 (6), 1346-1378 (2015).
  15. Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater. 25 (28), 3758-3779 (2013).
  16. Dong, H., Sun, L. D., Yan, C. H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev. 44 (6), 1608-1634 (2015).
  17. Ai, X., et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat Commun. 7, 10432-10440 (2016).
  18. Lu, S., et al. Multifunctional Nano-Bioprobes Based on Rattle-Structured Upconverting Luminescent Nanoparticles. Angew Chem Int Ed. 54 (27), 7915-7919 (2015).
  19. Bogdan, N., Vetrone, F., Ozin, G. A., Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11 (2), 835-840 (2011).
  20. Zheng, W., Huang, P., Tu, D., Ma, E., Zhu, H., Chen, X. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev. 44 (6), 1379-1415 (2015).
  21. Chen, X., Peng, D., Ju, Q., Wang, F. Photon upconversion in core-shell nanoparticles. Chem Soc Rev. 44 (6), 1318-1330 (2015).
  22. Wang, F., Deng, R., Liu, X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc. 9 (7), 1634-1644 (2014).
  23. Chen, G., Agren, H., Ohulchanskyy, T. Y., Prasad, P. N. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. Chem Soc Rev. 44 (6), 1680-1713 (2015).
  24. Yang, Y., et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed. 51 (13), 3125-3129 (2012).
  25. Sedlmeier, A., Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev. 44 (6), 1526-1560 (2015).
  26. Hu, M., et al. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans. 45 (36), 14101-14108 (2016).
  27. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA. 100 (24), 13940-13945 (2003).
  28. Ai, X., et al. Remote Regulation of Membrane Channel Activity by Site-Specific Localization of Lanthanide-Doped Upconversion Nanocrystals. Angew Chem Int Ed. 56 (11), 3031-3035 (2017).
  29. Xie, R., et al. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc Natl Acad Sci USA. 113 (19), 5173-5178 (2016).
  30. Bansal, A., Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc Chem Res. 47 (10), 3052-3060 (2014).
  31. Yang, Y., Aw, J., Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale. 9 (11), 3698-3718 (2017).
  32. Ai, X., Mu, J., Xing, B. Recent Advances of Light-Mediated Theranostics. Theranostics. 6 (13), 2439-2457 (2016).
check_url/pt/56416?article_type=t

Play Video

Citar este artigo
Ai, X., Lyu, L., Mu, J., Hu, M., Wang, Z., Xing, B. Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications. J. Vis. Exp. (129), e56416, doi:10.3791/56416 (2017).

View Video