Summary

扫描骨骼遗骸的骨骼矿物密度在法医学背景下

Published: January 29, 2018
doi:

Summary

骨密度 (BMD) 是了解营养摄入的重要因素。对于人类骨骼遗骸, 这是一个有用的指标, 以评估青少年和成人的生活质量, 特别是在致命的饥饿和忽视的情况。本文提供了为法医目的扫描人体骨骼遗骸的指南。

Abstract

本文的目的是介绍一种有前途的, 新的方法, 以帮助评估骨质量的法医相关的骨骼遗骸。骨密度是骨骼营养状况的重要组成部分, 在青少年和成人的骨骼残留中, 它可以提供骨骼质量的信息。对于成人遗骸, 它能提供关于病理条件或当骨头不足可能发生的信息。在青少年中, 它提供了一个有用的指标来阐明严重饥饿或忽视的情况, 这通常难以确定。本文提供了一个协议的解剖定位和分析的骨骼遗骸扫描通过双能 x 射线密度 (DXA)。三例研究表明, 当 DXA 扫描可以向法医医生提供信息。第一个案例研究提出了一个个人与观察到的纵向骨折的负重骨和 DXA 是用来评估骨不足。BMD 被发现是正常的建议的另一种病因的骨折模式目前。第二个案例研究采用 DXA 来调查疑似慢性营养不良。骨密度的结果与长骨长度的结果一致, 并表明青少年患有慢性营养不良。最后的案例研究提供了一个例子, 在一个十四月的婴儿中, 有致命的饥饿被怀疑, 这支持尸检结果的致命饥饿。DXA 扫描显示低骨密度的年龄, 并证实了传统的婴儿健康评估。然而, 在处理骨骼遗骸时, 应考虑埋藏的改变, 然后再应用此方法。

Introduction

法医人类学分析的目的是依靠从业者对骨骼的理解, 因为它是一个具有多重单位和变异的复杂组织。骨是一种分层的复合组织, 具有有机和无机成分组织成基质的胶原和碳酸化磷灰石1,2,3,4。无机成分, 或骨矿物是组织在一个纳米晶体结构提供的刚度和框架的有机部分1,2,5。矿物方面包括大约65% 的骨重量和它的质量受遗传和环境因素的影响1,2,4,6。由于骨矿物质占三维空间, 它可以被测量为骨矿物质密度 (BMD), 或质量的功能和体积占用7。骨矿物质的体积密度随着年龄的增长而变化8,9,10,11,12 , 并在临床设置中广泛使用, 作为骨质疏松和骨折危险指标4,13,14,15,16,17,18。双能量 X 射线密度 (DXA) 自1987年推出以来, 一直是评估骨骼健康的广泛工具, 特别是在腰椎和臀部区域进行的扫描11,13,19.在调查 BMD1319202122时, DXA 扫描的验证已显示为金标准.随后, 世界卫生组织 (WHO) 制定了规范性标准, 包括t-和z-青少年和成人腰椎 (L1-L4) 和臀部的评分定义, 因为这些区域很容易被捕获 volumetrically11 ,13,19,24

越来越多地依赖法医人类学在法医学个案中, 鼓励调查新的技术, 以更好地评估骨骼遗骸在各种情况下。这些潜在的技术之一是应用 DXA 扫描, 以评估骨密度作为一个指标的骨骼质量的情况下, 涉及致命饥饿和忽视在青少年25,26, 代谢性骨疾病的鉴定,埋藏研究中骨骼元素的生存性估计7,27

在2015美国卫生和人类服务部虐待儿童的报告中, 75.3% 的被报告的虐待儿童案件是某种形式的疏忽, 造成1670人死亡, 其中49州的死亡人数为28人, 而这些人员被忽视。大多数被忽视的青少年受害者没有表现出外在身体虐待的迹象, 但是在所有情况下都可以看到失败–茁壮成长29,30失败–茁壮成长定义为支持增长和发展的营养摄入不足。这些可能有不同的因素, 其中之一是由于营养缺乏造成的疏忽25,31 (请参见罗斯和阿贝尔32以获得更全面的审阅)。蓄意的饥饿导致儿童或婴儿死亡的情况更少见, 被认为是最极端的虐待形式25,33,34。这些营养缺陷对骨骼生长, 特别是儿童的纵向生长有很大影响, 这是营养不良的直接后果35。骨骼生长和矿化主要依赖维生素 D 和钙, 其补充已与增加骨密度25,35,36

这是非常困难的, 以确定或起诉这些情况下, 即使在完整的解剖31,37,38 , 并特别考虑到使用的方法必须用。因此, 在怀疑有致命饥饿或营养不良的情况下, 需要采取多学科的办法, 特别是在涉及残留在先进的分解状态26的情况下。当骨骼遗骸参与, 骨密度是一个有用的工具与其他骨骼指标, 如牙科发展, 测量的基底的头骨, 和长骨长度26。如果不使用上述对婴幼儿的骨骼指标, 就不可能辨别低 BMD 是否是先天代谢紊乱、营养不良或埋藏过程的结果。另一个问题是对婴儿或少年骨骼遗骸的体型大小 (体重和身高) 的估计。大多数规范性数据集需要关于身高或体重的信息来进行比较, 因为儿童的骨骼生长是大小和年龄依赖于12。当被评估的遗骸不明时, 应采用估算方法。对于一岁以下的婴儿, 规范性 DXA 数据只有年龄匹配。在1岁以上的青少年中, 为了估计骨骼残骸中的体型, 建议使用39或考吉尔40 , 因为它们基于丹佛生长研究样本, 包括年龄 1-1739,40。当年龄和身体大小的估计, 置信区间的变化, 并与疾病控制中心 (CDC) 产生的生长曲线的平均值的比较41应包括在报告中, 以及估计的身体尺寸的置信区间。重要的是要注意, 在大多数情况下, 有关血统和性别的信息不能从少年骨骼遗骸确定青春期前, 这是特别重要的青少年, 因为祖先和性别是已知的显著影响 BMD成人.在这种情况下, DXA 方法可能不适用。在确定的情况下, 应在分析之前获得有关血统、性别和体型的生物信息。

随着规范性数据的发展, 在儿科的骨密度增加了42,43 , DXA 是最广泛使用的技术44。营养不良的儿童在 BMD 方面的水平明显低于健康儿童, 与营养不良的严重程度相关45。DXA 扫描的腰椎和臀部是最合适的领域, 以评估青少年根据美国放射学院46。在整个生长期47期间, 儿童的脊柱、整个髋关节和全身都有重复性表现。然而, 腰椎是首选的, 因为它主要是由小梁骨, 这是更敏感的代谢变化, 在成长过程中发现更精确的比全髋关节评估25,47, 48. 使用 DXA 扫描在儿科评估中很常见。但是, 由于 DXA 是二维的, 它不捕获真实的体积, 并根据骨面积13生成 BMD。在儿童中, 这是一个重要的区别, 因为身体和骨骼的大小在儿童的年龄组内和之间变化12。大多数可用的规范性数据是与 DXA 测量进行比较, 但应谨慎选择适当的引用填充 (请参见 Binkovitz 和 Henwood13以获取常用的 DXA 规范数据库的列表)。

在扫描之后, 将使用年龄匹配和填充特定的参考示例来计算z分数。Z-分数更适合青少年, 因为t-分数比较测量的 BMD 与年轻成人样本12。一个z-介于-2 到2之间的分数表示按年代年龄的正常 bmd, 而任何低于-2 的分数表示按年代年龄的低 bmd49t-和z-分数的-2 到2范围表示两个标准偏差。显然, 如果一个测量的 BMD 分数是在两个标准偏差以上或低于他们的参考人口的意思, 他们被认为是临床正常的。

法医人类学家对形态变异的依赖来自于许多来源。其中之一是从疾病过程中产生的骨骼变异, 包括代谢性骨骼疾病50。在骨骼遗骸中识别特定疾病的能力有两个优势: 1) 向生物剖面中添加信息, 使其更加健壮, 2) 确定骨折是否是病理性的, 或造成创伤的结果。有多种代谢性骨紊乱51,52,53, 但最相关的 BMD 措施的当代遗骸是骨质疏松症。骨质疏松症的发病率在骨密度损失大于皮质骨丢失率的情况下发展为53,54,55。小梁骨丢失与骨折的危险性增加有关, 特别是在有更大的骨的骨骼内容 (例如, os 髋关节)4,55

大量的骨质疏松症和骨密度的研究已经进行了考古组合使用 DXA56,57,58,59和其他方法60,61,62. 然而, 当评估成人骨骼中的骨质疏松症的考古背景, 从业者无视诊断骨质疏松症临床需要的平均值的年轻参考样品同期与个人被评估55,63,64。这不是一个问题在法医人类学背景下, 因为个体是年龄-和性-匹配的现代人口与开发的参考样品为臀部和腰椎, 虽然 BMD 的变动通过成岩作用应该考虑法医遗骸然而, 埋藏是可能的因素影响的能力获得合法的 BMD 措施从考古标本。这也是法医方面的一个考虑因素, 那里的遗体从埋葬条件中恢复过来, 可能在几个月后死亡。尽管仍有法医的兴趣, 但对于从这些情况中发现的遗骸的骨密度得分, 还是有足够的怀疑。

骨质疏松症是临床评估使用t-分数的 bmd 措施, 从个人的 bmd 措施, 在髋关节或腰椎相对于一个年轻的成人参考样品使用 DXA65,66,67 ,68。此参考样品可用于鉴定骨骼中骨质疏松症的发生。在法医方面, 这是有用的两个原因: 1) 区分之间的骨折有关的虐待造成的创伤老年人和那些从增加骨质疏松症的个人69, 和 2) 作为一个可能的个人标识功能50

骨密度一直被认为是一个指标, 反映了动物的活动和营养70,71。最近有人指出, 骨密度, 作为骨骼的内在属性, 在埋藏过程中会影响其生存能力7。 分解的结果是骨骼元素的差异生存能力 (, 骨骼的离散, 解剖完整的单位) 和骨密度可以作为生存能力的预测因子, 或骨强度7,70,71,72,73,74,75. 这在法医背景以及考古和古生物环境中都很重要, 因为它影响到从业者充分运用方法估计生物剖面 (或年龄、性别、身高和血统) 的能力。仅某些骨骼元素代表。

体积密度 (包含在测量中的孔隙空间的骨密度) 是在这种情况下的适当测量, 考虑到它正是骨骼的多孔结构, 影响其对埋藏过程的敏感性7。许多评估骨密度的方法包括单束光子密度测量27,75, 计算机断层扫描76,77,78, photodensitometry72 ,79和 DXA80,81,82。DXA 扫描可能比其他方法更可取, 因为它是相对便宜的, 全身扫描可以执行, 个别骨骼元素可以单独评估或在分析期间一起。在埋藏研究之前和之后使用 BMD 扫描, 提供了关于不同埋藏因素和环境导致的骨骼存活性的有用信息82

本文概述了获取骨骼遗骸的 DXA 扫描的协议。该方法使用的普通, 临床定位的个人时, 执行腰椎和髋关节扫描。这使得从业者可以将骨骼遗骸与适当的规范性标准进行比较。所概述的议定书适用于青少年和成人遗骸, 并在以后讨论的限制。

Protocol

本议定书坚持北卡罗莱纳州立大学的人类研究道德准则。 1. 机器准备 注意: 以下协议可广泛应用于任何全身、临床 DXA 和 BMD 扫描仪。 在扫描任何个人之前每天进行一次校准, 以确保质量控制。在系统软件启动后出现校准提示后, 扫描已知密度的腰椎幻像, 以确保正确读取 BMD 扫描仪。 如果使用的扫描仪没有在软件中的质量控制功能, 比较腰?…

Representative Results

这里提出的方法是常用的在活的患者和考虑它的新颖性对已故的个体应该注意。图 6和图 8分别显示 AP 腰椎和左髋关节扫描的结果。在这些扫描评估的个人是一个已故的白人, 女性, 31 岁, 被关押在北卡罗莱纳州立大学法医分析实验室。该个体的总 BMD 评分为0.944 克/cm2 , 具有相应的t评分 (-0.9), 用于祖先和性?…

Discussion

本文的研究结果说明了 BMD 测量方法在法医学中的适用性。如图 6图 8所示, 活体个体对临床 BMD 扫描的扫描位置是可重现的骨骼遗骸, 但必须注意确保正确定位。这是特别关键的髋关节检查, 确定股骨颈中线需要正确的角度股骨和高估 BMD 可能发生, 如果髂节没有正确定位内侧 acetabulo 股关节.对于在案例研究 1中讨论的成年男性, BMD 指标可以为个?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者想对编辑评论者以及两位匿名评论者表示感谢。他们的建议和批评是有效的, 非常赞赏和大大改进了原稿。

Materials

QDR Discovery 4500W system Hologic Discovery W All inclusive DXA whole body scanner that includes APEX software for visualization and analysis of scans. Incorporates FRAX reference data developed by WHO to provide both t- and z- scores.
APEX 3.2 Hologic APEX Software used by the DXA PC connected to the bone desitometer (QDR Discovery 4500W system) to acquire the BMD data and analyze results.

Referências

  1. Ragsdale, B. D., Lehmer, L. M., Grauer, A. L. A Knowledge of Bone at the Cellular (Histological) Level is Essential to Paleopathology. A Companion to Paleopathology. , 225-249 (2011).
  2. Burr, D., Akkus, O., Burr, D., Allen, M. Bone Morphology and Organization. Basic and Applied Bone Biology. , 3-25 (2013).
  3. Hall, B. K. . Bones and Cartilage. , (2015).
  4. Yeni, Y. N., Brown, C. U., Norman, T. L. Influence of Bone Composition and Apparent Density on Fracture Toughness of the Human Femur and Tibia. Bone. 22 (1), 79-84 (1998).
  5. Glimcher, M. J., Avioli, L. V., Krane, S. M. The Nature of the Mineral Phase in Bone: Biological and Clinical Implications. Metabolic Bone Disease and Clinically Related Disorders (Third Edition). , 23-52 (1998).
  6. Bevier, W. C., Wiswell, R. A., Pyka, G., Kozak, K. C., Newhall, K. M., Marcus, R. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J. Bone Miner. Res. 4 (3), 421-432 (1989).
  7. Lyman, R. L., Pokines, J. T., Symes, S. A. Bone Density and Bone Attrition. Manual of Forensic Taphonomy. , 51-72 (2014).
  8. Vogel, K. A., et al. The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial. Am. J. Clin. Nutr. 105 (5), 1214-1229 (2017).
  9. van Leeuwen, J., Koes, B. W., Paulis, W. D., van Middelkoop, M. Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obes Rev. 18 (5), 526-546 (2017).
  10. Sopher, A. B., Fennoy, I., Oberfield, S. E. An update on childhood bone health: mineral accrual, assessment and treatment. Curr. Opin. Endocrinol. Diabetes Obes. 22 (1), 35-40 (2015).
  11. Pezzuti, I. L., Kakehasi, A. M., Filgueiras, M. T., Guimaraes, J. A., Lacerda, I. A., Silva, I. N. Imaging methods for bone mass evaluation during childhood and adolescence: an update. J. Pediatr. Endocrinol. Metab. , (2017).
  12. Specker, B. L., Schoenau, E. Quantitative Bone Analysis in Children: Current Methods and Recommendations. J. Pediatr. 146 (6), 726-731 (2005).
  13. Binkovitz, L., Henwood, M. Pediatric DXA: technique and interpretation. Pediatr. Radiol. 37 (1), 21-31 (2007).
  14. Siris, E. S., et al. Identification and Fracture Outcomes of Undiagnosed Low Bone Mineral Density in Postmenopausal Women: Results From the National Osteoporosis Risk Assessment. JAMA. 286 (22), 2815-2822 (2001).
  15. Riggs, B. L., Wahner, H. W., Dunn, W. L., Mazess, R. B., Offord, K. P., Melton, L. J. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J. Clin. Invest. 67 (2), 328 (1981).
  16. Marshall, D., Johnell, O., Wedel, H. Meta-Analysis Of How Well Measures Of Bone Mineral Density Predict Occurrence Of Osteoporotic Fractures. Br. Med. J. 312 (7041), 1254-1259 (1996).
  17. Majumdar, S., et al. Correlation of Trabecular Bone Structure with Age, Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius Using High Resolution Magnetic Resonance Imaging. J. Bone Miner. Res. 12 (1), 111-118 (1997).
  18. Cundy, T., Cornish, J., Evans, M. C., Gamble, G., Stapleton, J., Reid, I. R. Sources of interracial variation in bone mineral density. J. Bone Miner. Res. 10 (3), 368-373 (1995).
  19. Blake, G. M., Fogelman, I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med. J. 83 (982), 509-517 (2007).
  20. Blake, G. M., Fogelman, I. An Update on Dual-Energy X-Ray Absorptiometry. Semin. Nucl. Med. 40 (1), 62-73 (2010).
  21. Dhainaut, A., Hoff, M., Syversen, U., Haugeberg, G. Technologies for assessment of bone reflecting bone strength and bone mineral density in elderly women: an update. Womens Health.(Lond). 12 (2), 209-216 (2016).
  22. Patel, R., Blake, G. M., Rymer, J., Fogelman, I. Long-Term Precision of DXA Scanning Assessed over Seven Years in Forty Postmenopausal Women. Osteoporos. Int. 11 (1), 68-75 (2000).
  23. Amstrup, A. K., Jakobsen, N. F. B., Moser, E., Sikjaer, T., Mosekilde, L., Rejnmark, L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal. J. Bone Miner. Metab. 34 (6), 638-645 (2016).
  24. Blake, G. M., Fogelman, I. How Important Are BMD Accuracy Errors for the Clinical Interpretation of DXA Scans?. J. Bone Miner. Res. 23 (4), 457-462 (2008).
  25. Ross, A., Ross, A., Abel, S. M. Fatal Starvation/Malnutrition: Medicolegal Investigation from the Juvenile Skeleton. The Juvenile Skeleton in Forensic Abuse Investigations. , 151-165 (2011).
  26. Ross, A., Juarez, C. A brief history of fatal child maltreatment and neglect. Forensic Sci. Med. Pathol. 10 (3), 413-422 (2014).
  27. Lyman, R. L. Quantitative units and terminology in zooarchaeology. Am. Antiq. 59 (1), 36-71 (1994).
  28. U.S. Department of Health and Human Services. . Child Maltreatment. , (2015).
  29. Spitz, W. U., Clark, R., Spitz, D. J. . Spitz and Fisher’s Medicolegal Investigation of Death: Guidelines for the Application of Pathology to Crime Investigation. , (2006).
  30. Dudley, M. D., Mary, H. . Forensic Medicolegal Injury and Death Investigation. , (2016).
  31. Block, R. W., Krebs, N. F. Failure to Thrive as a Manifestation of Child Neglect. Pediatr. 116 (5), 1234 (2005).
  32. Ross, A. H., Abel, S. M. . The Juvenile Skeleton in Forensic Abuse Investigations. , (2011).
  33. Damashek, A., Nelson, M. M., Bonner, B. L. Fatal child maltreatment: characteristics of deaths from physical abuse versus neglect. Child Abuse Negl. 37 (10), 735 (2013).
  34. Welch, G. L., Bonner, B. L. Fatal child neglect: characteristics, causation, and strategies for prevention. Child Abuse Negl. 37 (10), 745-752 (2013).
  35. Gosman, J., Crowder, C., Stout, S. Growth and Development: Morphology, Mechanisms, and Abnormalities. Bone Histology: An Anthropological Perspective. , 23-44 (2011).
  36. Bass, S. L., Eser, P., Daly, R. The effect of exercise and nutrition on the mechanostat. J. Musculoskelet. Neuronal Interact. 5 (3), 239-254 (2005).
  37. Berkowitz, C. D. Fatal child neglect. Adv. Pediatr. 48, 331-361 (2001).
  38. Knight, L. D., Collins, K. A. A 25-year retrospective review of deaths due to pediatric neglect. Am. J. Forensic Med. Pathol. 26 (3), 221-228 (2005).
  39. Ruff, C. Body size prediction from juvenile skeletal remains. Am. J. Phys. Anthrop. 133 (1), 698-716 (2007).
  40. Cowgill, L. Juvenile body mass estimation: A methodological evaluation. J. Hum. Evol. , (2017).
  41. Kuczmarski, R. J., et al. 2000 CDC Growth Charts for the United States: methods and development. Vital and health statistics. Series 11, Data from the national health survey. (246), 1 (2002).
  42. Crabtree, N. J., et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 17 (2), 225-242 (2014).
  43. Crabtree, N. J., Leonard, M. B., Zemel, B. S., Sawyer, A. J., Bachrach, L. K., Lung, E. B. Dual-energy X-ray absorptiometry. Bone densitometry in growing patients. Guidelines for clinical practice. , 41-57 (2007).
  44. Ward, K., Mughal, Z., Adams, J., Sawyer, A. J., Fung, E. B., Bachrach, L. K. Tools for Measuring Bone in Children and Adolescents. Bone Densitometry in Growing Patients. Guidelines for clinical practice. , 15-40 (2007).
  45. Alp, H., Orbak, Z., Kermen, T., Uslu, H. Bone mineral density in malnourished children without rachitic manifestations. Pediatr. Int. 48 (2), 128-131 (2006).
  46. . ACR appropriateness criteria Available from: https://acsearch.acr.org/list (2016)
  47. Leonard, C., Roza, M., Barr, R., Webber, C. Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatr. Radiol. 39 (2), 148-154 (2009).
  48. Carrascosa, A., Gussinye, M., Yeste, D., Audi, L., Enrubia, M., Vargas, D., Schiinau, E. Skeletal mineralization during infancy, childhood, and adolescence in the normal population and in populations with nutritional and hormonal disorders. Dual X-ray absorptiometry (DXA) evaluation. Paediatric Osteology: New Developments in Diagnostics and Therapy. , 93-102 (1996).
  49. Blake, G. M., Wahner, H. W., Fogelman, I. . The Evaluation of Osteoporosis. , (1999).
  50. Christensen, A. M., Passalacqua, N. V., Bartelink, E. J. . Forensic Anthropology: Current Methods and Practice. , (2014).
  51. Brickley, M., Howell, P. G. T. Measurement of Changes in Trabecular Bone Structure with Age in an Archaeological Population. J. Archaeol. Sci. 26 (2), 151-157 (1999).
  52. Ortner, D. J., Putschar, W. G. . Identification of pathological conditions in human skeletal remains. 28, (1981).
  53. Waldron, T. . Palaeopathology. , (2009).
  54. Kozlowski, T., Witas, H. W., Grauer, A. L. Metabolic and Endocrine Diseases. A Companion to Paleopathology. , 401-419 (2012).
  55. Agarwal, S. C., Katzenberg, M. A., Saunders, S. R. Light and Broken Bones: Examining and Interpreting Bone Loss and Osteoporosis in Past Populations. Biological Anthropology of the Human Skeleton. , 387-410 (2008).
  56. Mays, S., Turner-Walker, G., Syversen, U. Osteoporosis in a population from medieval Norway. Am. J. Phys. Anthropol. 131 (3), 343-351 (2006).
  57. McEwan, J. M., Mays, S., Blake, G. M. The relationship of bone mineral density and other growth parameters to stress indicators in a medieval juvenile population. Int. J. Osteoarchaeol. 15 (3), 155-163 (2005).
  58. McEwan, J. M., Mays, S., Blake, G. M. Measurements of Bone Mineral Density of the Radius in a Medieval Population. Calcif. Tissue Int. 74 (2), 157-161 (2004).
  59. Lees, B., Stevenson, J. C., Molleson, T., Arnett, T. R. Differences in proximal femur bone density over two centuries. Lancet. 341 (8846), 673-676 (1993).
  60. Agarwal, S. C., Grynpas, M. D. Measuring and interpreting age-related loss of vertebral bone mineral density in a medieval population. Am. J. Phys. Anthropol. 139 (2), 244-252 (2009).
  61. Farquharson, M. J., Brickley, M. Determination of mineral make up in archaeological bone using energy dispersive low angle X-ray scattering. Int. J. Osteoarchaeol. 7, 95-99 (1997).
  62. Wakely, J., Manchester, K., Roberts, C. Scanning electron microscope study of normal vertebrae and ribs from early medieval human skeletons. J. Archaeol. Sci. 16 (6), 627-642 (1989).
  63. Brickley, M., Ives, R. . The Bioarchaeology of Metabolic Bone Disease. , (2010).
  64. Kneissel, M., Boyde, A., Hahn, M., Teschler-Nicola, M., Kalchhauser, G., Plenk, H. Age- and sex-dependent cancellous bone changes in a 4000y BP population. Bone. 15 (5), 539-545 (1994).
  65. Fan, B., et al. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems. J. Clin. Densitom. 17 (3), 344-377 (2014).
  66. Kanis, J. A., McCloskey, E. V., Johansson, H., Odén, A., Melton, L. J., Khaltaev, N. A reference standard for the description of osteoporosis. Bone. 42 (3), 467-475 (2008).
  67. Looker, A. C., Borrud, L. G., Hughes, J. P., Fan, B., Shepherd, J. A., Melton, J. L. Lumbar spine and proximal femur bone mineral density, bone mineral content, and bone area: United States, 2005-2008. Vital and health statistics 11. 251, 1-132 (2012).
  68. Beck, T. J., Looker, A. C., Ruff, C. B., Sievanen, H., Wahner, H. W. Structural Trends in the Aging Femoral Neck and Proximal Shaft: Analysis of the Third National Health and Nutrition Examination Survey Dual-Energy X-Ray Absorptiometry Data. J. Bone Miner. Res. 15 (12), 2297-2304 (2000).
  69. Humphries, A. L., Maxwell, A. B., Ross, A. H., Privette, J. Skeletal Trauma Analysis in the Elderly: A Case Study on the Importance of a Contextual Approach. 67th Annual Proceedings of the American Academy of Forensic Sciences. , 862 (2015).
  70. Willey, P., Galloway, A., Snyder, L. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims. Am. J. Phys. Anthropol. 104 (4), 513-528 (1997).
  71. Galloway, A., Willey, P., Snyder, L., Haglund, W. D., Sorg, M. H. Human bone mineral densities and survival of bone elements: A contemporary sample. Forensic Taphonomy: The Postmortem Fate of Human Remains. , 295-317 (1997).
  72. Symmons, R. Digital photodensitometry: a reliable and accessible method for measuring bone density. J. Archaeol. Sci. 31 (6), 711-719 (2004).
  73. Boaz, N. T., Behrensmeyer, A. K. Hominid taphonomy: transport of human skeletal parts in an artificial fluviatile environment. Am. J. Phys. Anthropol. 45 (1), 53-60 (1976).
  74. Behrensmeyer, A. K. The Taphonomy and Paleoecology of Plio-Pleistocene Vertebrate Assemblages East of Lake Rudolf, Kenya. Bull. Mus. Comp. Zool. 146, 473-578 (1975).
  75. Lyman, R. L. Bone density and differential survivorship of fossil classes. J. Anthropol. Archaeol. 3 (4), 259-299 (1984).
  76. Lam, Y. M., Pearson, O. M. Bone density studies and the interpretation of the faunal record. Evol. Anthropol. 14 (3), 99-108 (2005).
  77. Lam, Y. M., Chen, X., Pearson, O. M. Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. Am. Antiq. 64 (2), 343 (1999).
  78. Lam, Y. M., Chen, X., Marean, C. W., Bone Frey, C. J. Density and Long Bone Representation in Archaeological Faunas: Comparing Results from CT and Photon Densitometry. J. Archaeol. Sci. 25 (6), 559-570 (1998).
  79. Symmons, R. New density data for unfused and fused sheep bones, and a preliminary discussion on the modelling of taphonomic bias in archaeofaunal age profiles. J. Archaeol. Sci. 32 (11), 1691-1698 (2005).
  80. Pickering, T. R., Carlson, K. J. Baboon Bone Mineral Densities: Implications for the Taphonomy of Primate Skeletons in South African Cave Sites. J. Archaeol. Sci. 29 (8), 883-896 (2002).
  81. Ioannidou, E. Taphonomy of Animal Bones: Species, Sex, Age and Breed Variability of Sheep, Cattle and Pig Bone Density. J. Archaeol. Sci. 30 (3), 355-365 (2003).
  82. Hale, A. R., Ross, A. H. The Impact of Freezing on Bone Mineral Density: Implications for Forensic Research. J. Forensic Sci. 62 (2), 399-404 (2017).
  83. WHO Study Group. . Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. 843, (1995).
  84. Symes, S. A., L’Abbe, E. N., Stull, K. E., Lacroix, M., Pokines, J. T., Pokines, J. T., Symes, S. A. Taphonomy and the Timing of Bone Fractures in Trauma Analysis. Manual of Forensic Taphonomy. , 341-366 (2014).
  85. Ross, A. H., Juarez, C. A. Skeletal and radiological manifestations of child abuse: Implications for study in past populations. Clin. Anat. 29 (7), 844-853 (2016).
  86. Feldesman, M. R. Femur/stature ratio and estimates of stature in children. Am. J. Phys. Anthropol. 87 (4), 447-459 (1992).
  87. Anderson, M., Green, W., Messner, M. Growth and predictions of growth in the lower extremities. J. Bone Joint Surg. Am. 45 (A), 1-14 (1963).
  88. Kelly, T. L., Specker, B. L., Binkely, T., et al. Pediatric BMD reference database for US white children. Bone (Suppl). 36 (O-15), S30 (2005).
  89. Gomez, F., Galvan, R., Cravioto, J., Frenk, S. Malnutrition in infancy and childhood with special reference to Kwashiokor. Adv. Pediatr. 7, 131-169 (1955).
  90. Waterlow, J. C. Classification and definition of protein-caloric malnutrition. Br. Med. J. 2, 566-569 (1972).
  91. Braillon, P. M., Salle, B. L., Brunet, J., Glorieux, F. H., Delmas, P. D., Meunier, P. J. Dual energy x-ray absorptiometry measurement of bone mineral content in newborns: validation of the technique. Pediatr. Res. 32 (1), 77-80 (1992).
  92. Gallo, S., Vanstone, C. A., Weiler, H. A. Normative data for bone mass in healthy term infants from birth to 1 year of age. J. Osteoporos. 2012, 672403 (2012).
check_url/pt/56713?article_type=t

Play Video

Citar este artigo
Hale, A. R., Ross, A. H. Scanning Skeletal Remains for Bone Mineral Density in Forensic Contexts. J. Vis. Exp. (131), e56713, doi:10.3791/56713 (2018).

View Video