Summary

Dobbelt virkningerne af melanom celle-afledte faktorer på knoglemarv adipocytter differentiering

Published: August 23, 2018
doi:

Summary

Her præsenterer vi en pålidelig og enkel todimensionale (2D) coculture system til at studere samspillet mellem tumorceller og knoglemarv adipocytter, hvilket afslører en dobbelt effekt af melanom celle-afledte faktorer på knoglemarv adipocytter differentiering og udgør også en klassisk metode for mekanistiske studier af knogle metastaser.

Abstract

Krydstale mellem knoglemarv adipocytter og tumorceller kan spille en kritisk rolle i knogle metastaser. En række forskellige metoder er tilgængelige til at studere den betydelige krydstale; en to-dimensional transwell system for coculture er imidlertid fortsat en klassisk, pålidelig og let måde for denne krydstale undersøgelse. Vi præsenterer her, en detaljeret protokol, der viser coculture af knoglemarven adipocytter og melanom celler. Men sådan et coculture system kunne ikke kun bidrage til studie af celle signal transductions af kræftceller induceret af knoglemarven adipocytter, men også til fremtidens mekanistisk undersøgelse af knogle metastaser, der kan afsløre nye terapeutiske mål for knogle metastaser.

Introduction

Knoglemetastaser er udbredt blandt fremskreden kræftpatienter, men en kurativ behandling er stadig ikke tilgængelig. Ud over med speciale i lagre energi som fedt, kan adipocytter støtte tumorvækst og metastase i knoglemarven og andre organer1,2,3,4,5,6. Derudover spiller adipocytter en vigtig rolle i reguleringen af kræft celle biologi7,8,9,10 og metabolisme4,11,12 ,13,14,15,16, som godt som i knogle metastaser1,4,12. I knoglemarven niche, kan adipocytter også påvirke den biologiske opførsel af kræft celler4,6,17. Samspillet mellem knoglemarv adipocytter og kræftceller med osteotropism er væsentlig for forståelsen af knogle metastaser. Dog er lidt kendt.

Baseret på de aktuelle undersøgelser, der forskellige metoder anvendes på adipocytter, herunder to – eller tre – dimensionelle (2/3D) og ex vivo kulturer17,18,19,20,21. For nylig, Herroon et al. designet en ny 3D-kultur tilgang til at studere samspillet mellem knoglemarv adipocytter med kræft celler22. Selv om den 3D coculture er optimal for efterligne fysiologiske interaktioner mellem adipocytter og kræft celler, i vivo, det lider af dårlig reproducerbarhed22,23. Sammenlignet med en 2D coculture system, kan en 3D coculture system give forskellige cellulære fænotyper, såsom celle morfologi21,22,24,25,26. Desuden kan ex vivo kultur af isolerede spongiosa væv fragmenter føre til en robust udvækst af adipocytter fra kulturperler knoglemarv celler17.

I modsætning til disse tidligere modeller, men stadig 2D celle kultur model en klassisk, pålidelig og let teknik til hurtigt scanning kandidat molekyler og fænotyper ændres i enten adipocytter eller kræft celler in vitro-1, 4,6,12,15,27. For bedre at forstå krydstale mellem knoglemarv adipocytter og melanom celler, giver vi en detaljeret protokol for en 2D coculture system af knoglemarven adipocytter med melanom celler.

Protocol

Bemærk: Alle celler, der bruges i denne protokol skal være dyrket i mindst tre generationer efter optøning af frosne stock celler. 1. høst melanom celle-afledte faktorer Præparater Få B16F10 celler og en mus melanom cell line.Bemærk: Til denne protokol, en mus melanom cell line blev indhentet fra stamcelle Bank af kinesiske Academy of Sciences. Gøre en komplet medium for B16F10 cellekultur (100 mL). Bruge Dulbeccos modificerede Eagle…

Representative Results

I knoglemarven, adipocytter kan vises i tumor mikromiljø1,13,33,34,35 på et tidligt tidspunkt for at støtte tumor progression gennem opløselige faktorer eller aktivering osteoclastogenesis6,12,36, især i forbindelse med fedme<sup …

Discussion

Cocultures med skær har været udbredt at studere celle-til-celle interaktioner. 2D coculture system er en effektiv måde at iagttage, hvordan de to dele krydstale in vitro-, som vi her viste to forskellige kræft celle-drevet effekter på knoglemarv adipocytter. Mange laboratorier har udnyttet denne metode til at undersøge krydstale mellem adipocytter og kræft celler6,12,27,39.

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi takker Dov Zipori (The Weizmann Institute of Science, Rehovot, Israel) venligst for at give os murine knoglemarv stromale celle linje 14F1.1. Denne undersøgelse blev støttet af tilskud fra den kinesiske National Natural Science Foundation (nr. 81771729) og det Yongchuan Hospital i Chongqing medicinske universitet (nr. YJQN201330; YJZQN201527).

Materials

DMEM Invitrogen Inc. 11965092
Fetal Bovine Serum Invitrogen Inc. 16000–044
Phosphate Buffered Saline Invitrogen Inc. 14190-144
Insulin Sigma-Aldrich 91077C
3-isobutyl-1-methyl-xanthine Sigma-Aldrich I5879
Dexamethasone Sigma-Aldrich D4902
Oil Red o Sigma-Aldrich O0625
24-well plate Corning CLS3527
Transwell insert Millipore MCHT24H48
Penicillin/Streptomycin Invitrogen 15140-122
isopropanol Sigma-Aldrich I9516
0.25% trypsin Thermo Scientific 25200056
hemocytometer Bio-Rad 1450016
Culture incubator Thermo Scientific
50ml falcon Corning CLS430828
Clean Bench Thermo Scientific
Microscopy Olympus
200 μL pipet tips BeyoGold FTIP620
1000 mL pipet tips BeyoGold FTIP628

Referências

  1. Wang, J., et al. Adipogenic niches for melanoma cell colonization and growth in bone marrow. Laboratory Investigation. 97 (6), 737-745 (2017).
  2. Trotter, T. N., et al. Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone. The American Journal of Pathology. 186 (11), 3054-3063 (2016).
  3. Morris, E. V., Edwards, C. M. The role of bone marrow adipocytes in bone metastasis. Journal of Bone Oncology. 5 (3), 121-123 (2016).
  4. Diedrich, J. D., et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget. 7 (40), 64854-64877 (2016).
  5. Chkourko Gusky, H., Diedrich, J., MacDougald, O. A., Podgorski, I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obesity Reviews. 17 (11), 1015-1029 (2016).
  6. Chen, G. L., et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 7 (18), 26653-26669 (2016).
  7. Balaban, S., et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism. 5, 1 (2017).
  8. Huang, C. K., et al. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via beta-hydroxybutyrate. Nature Communications. 8, 14706 (2017).
  9. Wang, Y. Y., et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2 (4), 87489 (2017).
  10. Wang, C., Gao, C., Meng, K., Qiao, H., Wang, Y. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 10 (3), 0119348 (2015).
  11. Nieman, K. M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine. 17 (11), 1498-1503 (2011).
  12. Herroon, M. K., et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 4 (11), 2108-2123 (2013).
  13. Tabe, Y., et al. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells. Pesquisa do Câncer. 77 (6), 1453-1464 (2017).
  14. Wen, Y. A., et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Differentiation. 8 (2), 2593 (2017).
  15. Liu, Z., et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 6 (33), 34329-34341 (2015).
  16. Ye, H., et al. Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell. 19 (1), 23-37 (2016).
  17. Templeton, Z. S., et al. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia. 17 (12), 849-861 (2015).
  18. Daquinag, A. C., Souza, G. R., Kolonin, M. G. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Engineering Part C: Methods. 19 (5), 336-344 (2013).
  19. Emont, M. P., et al. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro. Endocrinology. 156 (12), 4761-4768 (2015).
  20. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., Searson, P. C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Frontiers in Bioengineering and Biotechnology. 4, 12 (2016).
  21. Edmondson, R., Broglie, J. J., Adcock, A. F., Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies. 12 (4), 207-218 (2014).
  22. Herroon, M. K., Diedrich, J. D., Podgorski, I. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells. Frontiers in Endocrinology (Lausanne). 7, 84 (2016).
  23. Lee, J. M., et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Laboratory Investigation. 93 (5), 528-542 (2013).
  24. Imamura, Y., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports. 33 (4), 1837-1843 (2015).
  25. Birgersdotter, A., Sandberg, R., Ernberg, I. Gene expression perturbation in vitro–a growing case for three-dimensional (3D) culture systems. Seminars in Cancer Biology. 15 (5), 405-412 (2005).
  26. Wang, W., et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 30 (14), 2705-2715 (2009).
  27. Dirat, B., et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Pesquisa do Câncer. 71 (7), 2455-2465 (2011).
  28. Scott, M. A., Nguyen, V. T., Levi, B., James, A. W. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development. 20 (10), 1793-1804 (2011).
  29. Zipori, D., Toledo, J., von der Mark, K. Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood. 66 (2), 447-455 (1985).
  30. Maridas, D. E., Rendina-Ruedy, E., Le, P. T., Rosen, C. J. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice. Journal of Visualized Experiments. (131), e56750 (2018).
  31. Iguchi, T., Niino, N., Tamai, S., Sakurai, K., Mori, K. Absolute Quantification of Plasma MicroRNA Levels in Cynomolgus Monkeys, Using Quantitative Real-time Reverse Transcription PCR. Journal of Visualized Experiments. (132), e56850 (2018).
  32. Bozec, A., Hannemann, N. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis. Journal of Visualized Experiments. (112), e53822 (2016).
  33. Shafat, M. S., et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 129 (10), 1320-1332 (2017).
  34. Gazi, E., et al. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. The Journal of Lipid Research. 48 (8), 1846-1856 (2007).
  35. Brown, M. D., et al. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. British Journal of Cancer. 102 (2), 403-413 (2010).
  36. Hardaway, A. L., Herroon, M. K., Rajagurubandara, E., Podgorski, I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clinical & Experimental Metastasis. 32 (4), 353-368 (2015).
  37. Aebi, M. Spinal metastasis in the elderly. European Spine Journal. 12, 202-213 (2003).
  38. Wagner, M., Bjerkvig, R., Wiig, H., Dudley, A. C. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocyte. 2 (3), 176-183 (2013).
  39. Bochet, L., et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochemical and Biophysical Research Communications. 411 (1), 102-106 (2011).
  40. Hirano, T., et al. Enhancement of adipogenesis induction by conditioned media obtained from cancer cells. Cancer Letters. 268 (2), 286-294 (2008).
  41. Gordeev, A. A., Chetverina, H. V., Chetverin, A. B. Planar arrangement of eukaryotic cells in merged hydrogels combines the advantages of 3-D and 2-D cultures. Biotechniques. 52 (5), 325-331 (2012).
check_url/pt/57329?article_type=t

Play Video

Citar este artigo
Wang, J., Wen, J., Chen, X., Chen, G. Dual Effects of Melanoma Cell-derived Factors on Bone Marrow Adipocytes Differentiation. J. Vis. Exp. (138), e57329, doi:10.3791/57329 (2018).

View Video