Summary

Co el trasplante de tejido ovárico humano con células endoteliales Ingeniería: una combinación de estrategia basado en la célula acelerada perfusión con entrega directa paracrina

Published: May 16, 2018
doi:

Summary

Para algunos pacientes, la única opción para la preservación de la fertilidad es la criopreservación de tejido ovárico. Desafortunadamente, la revascularización tardía socava la viabilidad folicular. Aquí, presentamos un protocolo de co trasplante de tejido ovárico humano con células endoteliales para utilización como una estrategia basada en celda combinando acelerada la perfusión con una entrega de paracrina directa de moléculas bioactivas.

Abstract

La infertilidad es un efecto secundario frecuente de la quimioterapia o la radioterapia y para algunos pacientes, criopreservación de ovocitos o embriones no es una opción. Como alternativa, un número creciente de estos pacientes se decide criopreservar tejido ovárico para autoinjerto después de la recuperación y remisión. A pesar de mejoras en los resultados entre los pacientes sometidos a auto-trasplante de tejido ovárico criopreservado, revascularización eficaz del tejido injertado sigue siendo un obstáculo importante. Para reducir la isquemia y mejorar así los resultados en pacientes sometidos a trasplante de auto, desarrollamos una estrategia basadas en células vascular para acelerar la perfusión del tejido ovárico. Se describe un método para el trasplante de co de las células endoteliales exógenos (ejecutivos) con tejido ovárico criopreservado en un modelo de xenoinjerto murino. Extendemos este enfoque para emplear a ejecutivos que han sido diseñados para expresar constitutivamente hormona Anti-Mullerian (AMH), permitiendo así sostenido paracrina señalización de entrada a los injertos de ovarianos. Trasplante junto con ejecutivos de mayor volumen folicular y desarrollo del mayor folículo antral, y ejecutivos de AMH-expresión promovieron retención de folículos primordiales quietos. Esta estrategia combinada puede ser una herramienta útil para mitigar la isquemia y la modulación de la activación folicular en el contexto de preservación de fertilidad o infertilidad en general.

Introduction

Cáncer sigue siendo entre las principales causas de muerte en el mundo desarrollado, sin embargo, décadas de investigación han producido avances significativos para la mayoría de los tipos de cáncer y en algunos casos casi se duplicó la supervivencia tasas1. Lamentablemente, los agentes quimioterapéuticos son a menudo gonadotóxica, agotamiento de la reserva de folículos primordiales en los ovarios y reducción de la fertilidad2. Este crecimiento de la población puede beneficiarse de varios métodos de preservación de la fertilidad incluyendo criopreservación de ovocitos o embriones, sin embargo, los pacientes que requieren la pronta iniciación de la terapia del cáncer y los pacientes prepuberales son elegibles para estas opciones. Como alternativa, algunos pacientes han decidido criopreservar tejido ovárico antes de emprender su régimen terapéutico y a la recuperación y la remisión, auto-transplante de tejido para restaurar la fertilidad3. Sin embargo, hasta la fecha, la supervivencia del trasplante y folicular salida auto-trasplante de siguiente siguen siendo relativamente bajos4, principalmente debido a tejido isquemia e hipoxia5,6,7. A pesar de numerosos esfuerzos para mejorar la viabilidad de los injertos corticales ováricas utilizando antioxidantes8,9, pro-angiogénicos citoquinas10,11,12,1 3o manipulaciones mecánicas14, isquemia del injerto en un trasplante después de 5 a 7 días ventana socava la viabilidad y supervivencia del injerto7. Para hacer frente a esto, hemos desarrollado una estrategia basada en la célula para facilitar la anastomosis de vasos de anfitrión y del injerto y así acelerar la reperfusión del tejido ovárico.

Además del insulto isquémico a tejido ovárico injertado en la ventana posterior al trasplante, la alteración de la señalización inter folicular puede contribuir al agotamiento de la piscina15,16. Porque las células endoteliales exógenas (ejecutivos) contribuyen al estables y en funcionamiento los vasos en la periferia del injerto, presentan una oportunidad única para transmitir una entrada molecular definida al tejido trasplantado. Como una prueba del principio, ejecutivos fueron manipulados a niveles express súper fisiológicos de hormona Anti-Mullerian (AMH), un miembro de la superfamilia de beta (TGFβ) factor de crecimiento transformante que se ha demostrado que restringir el crecimiento folicular17. Comparación de la distribución folicular en los injertos trasplantados conjuntamente con control y células de AMH-expresión comprueba si la actividad biológica y potencia de ejecutivos de ingeniería.

En Resumen, mediante la mejora de injerto viabilidad y supresión de la movilización precoz del grupo folicular, este enfoque puede aumentar la productividad de auto trasplanta tejido ovárico en pacientes sometidos a la preservación de la fertilidad. Por otra parte, la plataforma basada en ExEC permite interrogatorio experimental de reguladores moleculares que han sido implicados en el desarrollo folicular.

Protocol

Todos los procedimientos con animales sujetos han sido aprobados por el institucional cuidado Animal y el Comité uso (IACUC) en el Weill Cornell Medical College. Todos los experimentos de xenotrasplante con tejido ovárico se realizaron conforme a las normas y directrices pertinentes. Tejido ovárico humano se obtuvo de pacientes programados para quimioterapia o radioterapia para el tratamiento del cáncer o trasplante de médula ósea previo. La Junta de revisión institucional (IRB) Comité de Weill Cornell Medical Co…

Representative Results

Para determinar si co trasplante de ejecutivos proporciona un beneficio al tejido de pacientes, tiras corticales ováricas descongeladas se divide en trozos iguales de tamaño y engrafted bilateralmente en inmuno-comprometidos, gamma NOD scid (NSG), ratones. Con un lado encajado en un coágulo de fibrina solo (no ECs) y los otros ejecutivos que contienen (Figura 1a), cada ratón fue su propio control. Ejecutivos se obtuvieron mediante aislamiento de primaria …

Discussion

Aquí demostramos que la trasplante de ejecutivos ofrece un beneficio significativo para la viabilidad del tejido ovárico y la función después de xenoinjerto en ratones. Normas para la aplicación clínica de la auto-trasplante de tejido ovárico para la preservación de la fertilidad no han sido conjunto y los parámetros óptimos (tamaño, sitio de trasplante, duración del injerto, etcetera.) 32 , 33 , 34 para may…

Declarações

The authors have nothing to disclose.

Acknowledgements

Omar Alexander Man para las ilustraciones.
L.M. fue apoyada por un premio de piloto de la clínica de Cornell y beca de investigación traslacional Science Center y un ASRM.
Los autores desean agradecer a James miembros de laboratorio para la lectura crítica del manuscrito.

Materials

Leibovitz’s L-15 medium Gibco 11415064
Antibiotic-Antimycotic Gibco 15240062 Anti-Anti X100
Sucrose Sigma S 1888
Fibrinogen Sigma F 8630 from bovine plasma
Thrombin Sigma T 1063 from human plasma
DMSO Sigma D 2650
DMEM Gibco 12491015
Enzyme Cell Detachment Medium Invitrogen 00-4555-56 Accutase
Plastic paraffin film Bemis NA Parafilm M
Surgical paper tape 2.5 cm 3M 1530-1 Micropore
Surgical Paper tape 1.25 cm 3M 1530-0 Micropore
Perforated plastic Surgical tape 1.25 cm 3M 1527-0 Transpore
Monofilament Absorbable Suture Covidien UM-203 Biosyn
Braided Absorbable Suture Covidien GL-889 Polysorb
Povidone-iodine Solution USP 10% Purdue Products 67618-153-01 Betadine Solution Swab Stick
Cryoviales Nunc 377267 CryoTube
sterile ocular lubricant Dechra 17033-211-38 Puralube
1.7 ml micro-centrifuge tube Denville C-2172 Eppendorf
Anasthesia system VetEquip V-1 table top system with scavenging
Endothelial cells Angiocrine Biosciences, Inc., San Diego, CA, USA Isolated, transfected with E4-ORF- 1 and labeled endothelial cells
Trichrome stain Sigma HT15-1kt Trichrome Stain (Masson) Kit
Isolectin Invitrogen I32450 isolectin GS-IB4 From Griffonia simplicifolia, Alexa Fluor™ 647 Conjugate

Referências

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin. 67 (1), 7-30 (2017).
  2. Magelssen, H., Melve, K. K., Skjaerven, R., Fossa, S. D. Parenthood probability and pregnancy outcome in patients with a cancer diagnosis during adolescence and young adulthood. Hum Reprod. 23 (1), 178-186 (2008).
  3. Donnez, J., Dolmans, M. M., Diaz, C., Pellicer, A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril. 104 (5), 1097-1098 (2015).
  4. Stoop, D., Cobo, A., Silber, S. Fertility preservation for age-related fertility decline. Lancet. 384 (9950), 1311-1319 (2014).
  5. Aubard, Y., et al. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 14 (8), 2149-2154 (1999).
  6. Newton, H., Aubard, Y., Rutherford, A., Sharma, V., Gosden, R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 11 (7), 1487-1491 (1996).
  7. Van Eyck, A. S., et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 92 (1), 374-381 (2009).
  8. Nugent, D., Newton, H., Gallivan, L., Gosden, R. G. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J Reprod Fertil. 114 (2), 341-346 (1998).
  9. Kim, S. S., et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril. 82 (3), 679-685 (2004).
  10. Abir, R., et al. Improving posttransplantation survival of human ovarian tissue by treating the host and graft. Fertil Steril. 95 (4), 1205-1210 (2011).
  11. Friedman, O., et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 27 (2), 474-482 (2012).
  12. Shikanov, A., et al. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A. 17 (23-24), 3095-3104 (2011).
  13. Soleimani, R., Heytens, E., Oktay, K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 6 (4), e19475 (2011).
  14. Israely, T., Dafni, H., Nevo, N., Tsafriri, A., Neeman, M. Angiogenesis in ectopic ovarian xenotransplantation: multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI. Magn Reson Med. 52 (4), 741-750 (2004).
  15. Buratini, J., Price, C. A. Follicular somatic cell factors and follicle development. Reprod Fertil Dev. 23 (1), 32-39 (2011).
  16. Dunlop, C. E., Anderson, R. A. The regulation and assessment of follicular growth. Scand J Clin Lab Invest Suppl. 244, 13-17 (2014).
  17. Durlinger, A. L., et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 140 (12), 5789-5796 (1999).
  18. Schmidt, K. L., Ernst, E., Byskov, A. G., Nyboe Andersen, A., Yding Andersen, C. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod. 18 (12), 2654-2659 (2003).
  19. Jensen, A. K., et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 30 (12), 2838-2845 (2015).
  20. Oktay, K., Newton, H., Aubard, Y., Salha, O., Gosden, R. G. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology?. Fertil Steril. 69 (1), 1-7 (1998).
  21. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 174 (10), 6477-6489 (2005).
  22. Ramalingam, R., Rafii, S., Worgall, S., Brough, D. E., Crystal, R. G. E1(-)E4(+) adenoviral gene transfer vectors function as a "pro-life" signal to promote survival of primary human endothelial cells. Blood. 93 (9), 2936-2944 (1999).
  23. Seandel, M., et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc Natl Acad Sci U S A. 105 (49), 19288-19293 (2008).
  24. Meirow, D., et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 22 (6), 1626-1633 (2007).
  25. Assidi, M., et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 79 (2), 209-222 (2008).
  26. Thakur, S. C., Datta, K. Higher expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR/SF2) during follicular development and cumulus oocyte complex maturation in rat. Mol Reprod Dev. 75 (3), 429-438 (2008).
  27. Dolmans, M. M., et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 134 (2), 253-262 (2007).
  28. Amorim, C. A., et al. Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. J Assist Reprod Genet. 28 (12), 1157-1165 (2011).
  29. Kawamura, K., et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 110 (43), 17474-17479 (2013).
  30. Suzuki, N., et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 30 (3), 608-615 (2015).
  31. Campbell, B. K., Clinton, M., Webb, R. The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology. 153 (9), 4533-4543 (2012).
  32. Donnez, J., et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 99 (6), 1503-1513 (2013).
  33. Ferreira, M., et al. The effects of sample size on the outcome of ovarian tissue cryopreservation. Reprod Domest Anim. 45 (1), 99-102 (2010).
  34. Gavish, Z., Peer, G., Roness, H., Cohen, Y., Meirow, D. Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod. 30 (4), 1003 (2015).
  35. Donnez, J., Dolmans, M. M. Fertility Preservation in Women. N Engl J Med. 377 (17), 1657-1665 (2017).
  36. Salama, M., Woodruff, T. K. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 34 (4), 807-822 (2015).
  37. Donnez, J., Dolmans, M. M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 32 (8), 1167-1170 (2015).
  38. Meirow, D., et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril. 106 (2), 467-474 (2016).
  39. Kalich-Philosoph, L., et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 5 (185), 185ra162 (2013).
  40. Kano, M., et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci U S A. 114 (9), E1688-E1697 (2017).
check_url/pt/57472?article_type=t

Play Video

Citar este artigo
Man, L., Park, L., Bodine, R., Ginsberg, M., Zaninovic, N., Schattman, G., Schwartz, R. E., Rosenwaks, Z., James, D. Co-transplantation of Human Ovarian Tissue with Engineered Endothelial Cells: A Cell-based Strategy Combining Accelerated Perfusion with Direct Paracrine Delivery. J. Vis. Exp. (135), e57472, doi:10.3791/57472 (2018).

View Video